说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 微测井
1)  uphole survey
微测井
1.
Using 3-C uphole survey technique to survey P-wave and S-wave velocity on surface.;
利用三分量微测井技术调查表层纵、横波速度
2.
Application of 3C VSP uphole survey technique in near-surface survey.;
VSP三分量微测井技术在表层调查中的应用
3.
Using uphole survey data to compensate high-frequency components of seismic data.;
利用微测井资料补偿地震数据的高频成分
2)  micro-logging
微测井
1.
Computer Aided Programming on Interpretation and Analysis of Micro-logging;
计算机辅助微测井解释分析的程序设计
2.
Because refraction has some absent in the static correction, at present, many company do static correction by the micro-logging.
针对小折射在低速带调查中的缺陷,很多单位用微测井来做低速带校正,而且微测井技术能够提供一个较精确的静校正量计算方法。
3.
Owing to many factors impact statics accuracy,for this reason,to use combined shallow refraction,micro-logging and preliminary wave(preliminary refraction wave) data in field records to calculate statics and integrated with residual statics to improve statics precision.
由于影响静校正精度的因素很多,为此提出了利用小折射、微测井及野外大量生产记录的初至波(又称初至折射波)的资料相结合来计算静校正量,并综合利用剩余静校正方法,以利于提高静校正的精度。
3)  microlog
微测井
1.
Joint application of the shallow refraction and microlog methods for both Pwave and S-wave;
纵横波浅层折射和纵横波微测井方法联合应用研究
4)  micro-log
微测井
1.
Previous micro-log method is "excitation in surface and receiving in wells".
以往的微测井采集方法为“地表激发、井中接收”,此方法存在如下问题:所得记录初至起跳不干脆、背景不干净;地表激发经常造成井壁垮塌,使下井设备被卡在井下,造成设备损失,并增大了钻井成本。
2.
The low subweathered zones are investigated by using micro-log,by which the distribution of low subweathered zones can be determined accurately,thus excitation parameters are provided for future seismic exploration.
通过微测井的方式进行低降速带调查,可以准确的确定该区低降速带的分布情况,为该区进一步的地震勘探提供激发参数。
3.
The paper proposed the methods of multi-azimuth inverse VSP tomography to calculate near-surface velocity aimed replacing micro-log method at complex surface places.
本文首先就复杂地表常规微测井技术求取表层速度存在的问题,提出了多方位角逆VSP层析成像方法。
5)  uphole shooting
微测井
1.
Static correction of converted waves via shear wave uphole shooting.;
横波微测井转换波静校正方法
6)  uphole survey in double hole
双井微测井
补充资料:饱和度测井
      通过井筒,用测井仪器测量和计算储层岩石孔隙中的含油饱和度,以判别油、气层中原始含油、气、水饱和度或剩余油、气、水饱和度的分布。测量地层含油饱和度有自然电位、人工电位、自然γ射线、微测井、感应、侧向、声波、岩性密度、中子、中子寿命、碳氧比C/O能谱、介电等测井方法。根据地质条件和开采条件,选用其中几种方法,综合解释饱和度。
  
  油、气田开发初期,在裸眼井中测量原始含油气饱和度的常规测井方法是电阻率法。用上述方法获得的测井资料求出地层真电阻率和孔隙度,利用相应的室内实验数据,根据下列的阿尔奇公式,即可求出相应的地层含水饱和度:
  式中Sw为地层含水饱和度,Rw为地层水电阻率,Rt为砂岩储层真电阻率,∮为孔隙度;m、n、ab分别为胶结指数(或孔隙结构指数)、饱和度指数、孔隙度系数、饱和度系数。这些参数根据实验室岩电分析的岩心孔隙度、含水饱和度、电阻率求得。原始含油、气饱和度S0=1-Sw。对于泥质含量高的砂岩储层则需对粘土影响进行校正。
  
  在油田开发中,需要测得不同阶段的剩余油饱和度。注水开采的油田,一般注入淡水,其矿化度比油层水低得多,因而电阻率高,用电阻率法测定油水饱和度就很困难,目前采用的测井方法有常规测井方法加介电测井法或人工电位法。油和水的介电常数不同,利用介电测井法可不受地层水矿化度的限制,以判断油田注淡水后油、水饱和度的变化。但当油层电阻率小于40Ω·m和泥质含量增高时,介电测井法判断水淹层精度不高。人工电位法是利用注淡水后不同的含水饱和度造成的油层水矿化度的差异,来判别剩余油饱和度,在地层水矿化度小于10000ppm的条件下效果较好。这些方法同时配合常规测井方法如自然电位测井法,效果更好。上列方法只能测裸眼井。在已下套管的井中要用放射性测井为主的测井系列。
  
  C/O能谱测井法 石油含碳量高,水含氧量高,用C/O能谱测井仪测得每个油层中C、O原子的相对含量,就可以用来计算剩余油饱和度(S0)。孔隙度越高,求得S0的精度就越高。如孔隙度小于15%时,就不能用作定量分析。此法可以不受地层水矿化度限制,并能在套管井中测量。
  
  中子寿命测井法 地层水或注入水矿化度高时,水中含氯量多,氯的热中子俘获截面大,而油的热中子俘获截面小。热中子衰减时间与俘获截面成反比,测量热中子的俘获截面,即可求得剩余油饱和度。此法可在套管中测量。通常采用时间推移测井:即在油井完成后未开采前,进行第一次测井,求得原始含油饱和度(S0);油井开始生产后,注入相同于地层水的高矿化度水或让边、底水自然进侵,使油层含水饱和度不断增加,定期用此法检查,并将结果与原始情况对比,可得到当时的剩余油饱和度。当地层水矿化度小于20000ppm时,求得S0误差大,本法不能应用。
  
  测井-注入-测井法 在开发后期应用中子寿命测井仪测量水驱残余油饱和度的一种测井方法。此法有三个步骤:①先进行一次测井获得底数;②注入和地层水矿化度不同的水,要使两种地层水的俘获截面相差50mb(毫靶恩)以上,1mb为10-31m2;③重复测井。对比两次测井结果,即可求得残余油饱和度。此法精度高,一般误差小于 5%。可用作决定提高石油采收率方法的依据。关键在于要有一套严格的施工工艺:注入地层的水必须均匀,而且将油层水推至中子寿命仪探测范围以外;注入的压力小于地层破裂压力,以不损坏地层的孔隙结构为限。否则,就会影响精度。对含高矿化度地层水的储油层,在开发中期,用此法也可测定剩余油饱和度。
  
  

参考书目
   P.A.魏奇门著,华东石油学院译:《测井解释基础》,第一版,石油化学工业出版社,北京,1978。
   (P.A.Vichmann,Log Interpretation Fundamentals,Dresser Atlas Division, Dresser Industries Inc.,Houston,1975.)
   D.C.邦德等编著,王平等译:《残余油饱和度确定方法》,第一版,石油工业出版社,北京,1982。(D.C.Bondet al.,Determination of Residual Oil Saturation,Interstate Oil Compact Commission,Oklahoma,1978.)
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条