说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 材料成分方程系数
1)  coefficient of material composition functions
材料成分方程系数
1.
During the modeling for functional gradient materials,one needs to modify continually the coefficient of material composition functions to satisfy the design requirements.
功能梯度材料实体建模过程中,需要对材料成分方程系数进行不断修改以满足设计要求。
2)  material partial factor
材料分项系数
3)  material composition
材料成分
1.
The result shows that when the reasonable material composition and heat treatment technique are selected and the distribution of the spreading of heat treatment temperature field is improved a high strength aluminum alloyed flange can be obtained.
对高压电瓷绝缘子铝合金法兰材质及热处理工艺进行了研究 ,结果表明 ,选择合理的材料成分和热处理工艺 ,并改善热处理炉温度场的分布 ,可获得高强度铝合金法兰。
2.
It emphasizes that the material compositions in the semantic structure are grammatical concepts,which is different from the material objective in the objictive world.
本文强调指出,作为语义结构中的材料成分是语法概念,不同于物质世界中的材料物质。
3.
By optimizing material composition, designing reasonable casting technique and combining with heat treatment, a new production process, which can greatly improve the wear resistance and comprehensive mechanical properties of the high manganese steel ring-hammer, has been researched and developed.
通过优化材料成分、设计合理的铸造工艺,并结合热处理工艺强化措施,研发了一种大大提高高锰钢环锤耐磨性和综合力学性能的生产新工艺。
4)  composite materials with negative permittivity
负介电系数集成材料
5)  differential equation with varied coefficient
变系数微分方程
1.
The differential equation with varied coefficient of the SH-wave in the functionally graded materials is established.
建立了功能梯度材料中SH波的变系数微分方程。
2.
The differential equation with varied coefficient of one-dimensional P wave in the functionally graded materials is established.
建立了功能梯度材料中一维 P 波的标准变系数微分方程,对材料的弹性模量和质量密度均呈指数函数变化情况进行了求解,弹性模量、质量密度相同分布时,给出子位移的解析解;弹性模量、质量密度不同分布时,给出了位移的 WKBJ 近似解析解。
6)  variable coefficient differential equation
变系数微分方程
补充资料:常系数线性常微分方程


常系数线性常微分方程
ion with constant coefficients linear ordinary differential equa-

常系数线性常微分方程【枷。ro司画叮由肠,即位叭侧,.-d佣初山伪份加吐仪喇击d曰血;皿“e如oe皿巾加Pe皿”ua-朋oeyP姗ell“e c noc”皿Hn“MH劝3如加”HellT别”“} 形如 x(”)+a:x(”一’)+…+a。x=f(r)(1)的常微分方程(见常微分方程(山伍州翔石日eq业tion,。成咖叮)),其中x(t)是未知函数,a,,…,a。是给定的实数,f(t)是给定的实函数. 对应于(l)的齐次方程(加几幻g”阳us叫Ua-tion) x(”)+a .x‘”一’)+…+a。x=o(2)可求积如下.设又:,…,又*是特征方程 又”+al几”一’+…+a。_1又+a。=O(3)的所有不同的根,重数分别为l,,…,l*;11十…十l*=n.于是函数e匆‘,r。‘,‘,…,r‘,一’e‘,亡,j=1,…,k(4)是(2)的线性无关的解(一般说是复的);即它们构成一个基本解组(允n山nrnt习systeTn of solutions).(2)的通解是基本解组的具有任意常数系数的线性组合·如果幻=为+角i是复数,则对每个满足o簇m蕊12一l的整数m,复解t门e”‘的实部t,e勺‘·cOS口zt和虚部t“e口,r sin刀,t是(2)的线性无关的实解,从而重数为lj的一对共扼复根为士汤i对应Zlj个线性无关的实解t爪e勺‘c“口,t,t用e“,‘sin几t,川=o,l,‘”,l,一l· 非齐次方程(l)可以用常数变易法(银由tionofco璐扭nts)求积.如果f是拟多项式(q恻昭i一卯1扣om阁)即 f(t)=e“‘(尹.(r)c沉bt+砚。(t)sin br),其中p。,q。是次数续m的多项式,且a十bi不是(3)的根,则可求(l)的形如 x。(t)=e“‘(P。(t)姗br+Q。(r)sin bt)(5)的特解;这里氏,Q。是系数待定的m次多项式,这些系数可通过以(5)代人(l)求出.如果a+bi是(3)的k重根,则可用待定系数法求(l)的形如 x。(t)=r‘e“‘(p,(r)e仿br+Q。(r)sin bt)的特解.如果x。(O是非齐次方程(l)的一个特解而x:(t),…,x。(t)是相应的齐次方程(2)的基本解组,则(l)的通解由公式 x(t)=x。(t)+ C lx,(t)+…+C。x。(r)给出,其中C,,…,C。是任意常数. n阶齐次线性微分方程组 交=Ax(6)(其中x任R”是未知向量,A是n xn实矩阵)可如下求积.如果又是矩阵A的重数为k的实本征值,则可求出对应于又的一个解x=(x:,,二,x。),其中 x:=pl(t)e,亡,…,x。=p。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条