1) distributed optical fiber sensor
分布式光纤传感器
1.
Furthermore,the leakage detection technologies developed home and abroad in recent years,especially the technologies based distributed optical fiber sensor are summarized.
介绍了管道泄漏检测技术的主要方法,对各种不同泄漏检测方法的性能及优缺点进行了比较,并对国内外近年来管道泄漏检测技术,尤其是对基于分布式光纤传感器的长输油气管道泄漏检测技术的最新研究成果进行了总结。
2.
To overcome the difficulty in the detection of cracks in concrete, distributed optical fiber sensors can be preembedded in structures.
为了解决土木工程结构中裂缝检测的难题,可以通过在结构中埋入分布式光纤传感器实现。
3.
A bending distributed optical fiber sensor for detecting and lcating longdistance natural gas pipeline leakage was presented.
提出了一种长距离油气管线泄漏在线监测的分布式光纤传感器。
2) Distributed Fiber Sensor
分布式光纤传感器
1.
Based on Optical Time-Domain Reflectometry and Rayleigh scattering, fully automatic control mechanics-optics coupling test system was designed for model tests of crack sensing and the constitutive relation of crack sensing using distributed fiber sensor was investigated.
基于光时域反射技术及瑞利散射,构建全自动控制的高精度力-光耦合试验系统,进行了分布式光纤传感器裂缝传感模型试验,研究了混凝土模型力-光本构关系,试验中组合传感光纤初始感知缝宽达0。
2.
For a distributed fiber sensor taking a polarization-maintaining fiber as sensing fiber, the environment factors induce the orthogonal polarization modes propagated in the fiber coupling each other.
分布式光纤传感器能够测量沿光纤长度上连续分布的外界量。
3.
Recently, the distributed fiber sensor based on scattering light has many merits, such as light and soft, resistance to electromagnetic interference, easy to carry out the distributed measurement, sensing and transmission in one fiber, and so on, so that it is pretty popular in sensing field.
近年来,以光纤中散射光为传感载体的分布式光纤传感器以其独特的优势,比如传感光纤质轻柔软、抗电磁干扰、分布式测量以及传感传输集于一身等,在传感领域内得到众多研究者的青睐。
3) distributed fiber optic sensor
分布式光纤传感器
1.
In order to accurately measure the strain applied on a structure, a theoretical model of distributed fiber optic sensor with coating and jacket is established from the view of microscopic mechanics.
为能准确测量结构的应变,从细观力学的角度建立了铺设在结构中的具有二层保护介质的分布式光纤传感器的理论模型,分析了涂敷层、护套的剪切模量和半径对分布式光纤应变检测结果的影响,比较了不同铺设长度下光纤的传感规律,提出了降低保护介质对光纤应变传感影响的方法。
4) distributed optic fiber sensor
分布式光纤传感器
1.
Aim To introduce the present development research on the Brillouin scattering distributed optic fiber sensor.
目的 介绍了基于布里渊散射的分布式光纤传感器的当前进展及趋势 。
2.
This paper introduces the advancement and the developing direction of the Brillouin scattering distributed optic fiber sensor.
介绍了基于布里渊分布式光纤传感器的进展和发展趋势,以及应用后向布里渊散射测量光纤温度/应变的基本原理。
5) distributed optical fiber sensors
分布式光纤传感器
1.
Comparison of characteristics of commonly-used distributed optical fiber sensors;
常用分布式光纤传感器性能比较
补充资料:光纤传感器
通过光导纤维把输入变量转换成调制的光信号的传感器。光纤传感器的测量原理有两种:一种是被测参数引起光导纤维本身传输特性变化,即改变光导纤维环境如应变、压力、温度等,从而改变光导纤维中光传播的相位和强度,这时测量通过光导纤维的光相位或光强度变化,就可知道被测参数的变化;另一种是以激光器或发光二极管为光源,用光导纤维作为光传输通道,把光信号载送入或载送出敏感元件,再与其他相应敏感元件配合而构成传感器。前者属于物性型传感器,后者属于结构型传感器。这两种传感器在自动测量系统中都有应用。
发展背景 为了检测和处理种类繁多的信息,需要用传感器将被测量转换成便于处理的输出信号形式,并送往有关设备。在这个过程中采用光信号比电信号有很大的优越性。用光纤传输光信号,能量损失极小,而且光纤的化学性质稳定、横截面小,同时又具有防噪声、不受电磁干扰、无电火花、无短路负载和耐高温等优点。因此70年代末光纤通信技术兴起,光纤传感器也获得迅速发展。
分类 光纤传感器按照使用的光纤不同,通常分为多模光纤传感器和单模光纤传感器两大类。光纤芯内折射率分布对传输频带宽度的影响很大。可以传输多种传输模的称为多模光纤,传输频带宽度可达30兆赫至数百兆赫。芯子与包层极细的一种光导纤维(芯子与包层间折射率差值很小)只能传输一种传输模,称为单膜光纤,传输频带宽度高达10吉赫。多模光纤传感器又分为传光型和光强调制型两种,单模光纤传感器则分为偏振调制型和相位调制型两种。
① 传光型光纤传感器 以多模光导纤维来传输光信号,根据光接受强度不同进行测量,而对被测参数起检测作用的是其他敏感元件。这种传感器多用于工业检测液位、压力、形变、温度、流速、电流、磁场等。它的优点是性能稳定可靠,结构简单,造价低廉,缺点是灵敏度低。图1为光纤液位传感器的原理示意图。
② 光强调制型光纤传感器 在压力作用下光纤产生微弯变形导致光强度变化,从而引起光纤传输损耗的改变,并由吸收、发射或折射率变化来调制发射光,可制成微弯效应的光纤压力传感器(图2)。由于齿板的作用,在沿光纤光轴的垂直方向上加有压力时,光纤产生微弯变形,光波导方式改变,传输损耗增加。这种传感器具有较高的灵敏度。此外,利用光学编码盘配合光纤可制成数字式光纤压力传感器。
③ 偏振调制型光纤传感器 单模光导纤维的偏振特性极易受到外界各种物理量的影响,如在高电场下的克尔效应和在强磁场下的法拉第效应,利用这一原理可制成大电流、高电压测试传感器(图3)。
④ 相位调制型光纤传感器 用单模光导纤维构成干涉仪,外界各种物理量的影响因素能导致光导纤维中光程的变化,从而引起干涉条纹的变动。图4为干涉仪式光纤温度传感器的结构原理。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界温度(或压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。这种传感器的优点是有极高的灵敏度,主要用于光纤陀螺、光纤水听器、动态压力和应变测量、机械振动测量等方面。图5为光纤陀螺仪的基本光学系统图。BS1、BS2是两个半透镜,激光透过BS1在BS2被分为两路,各自通过聚光镜分别沿着单模光导纤维环向左右两个方向进行。当两路光重新抵达BS2之后,便被导入同轴光路并在F1上产生干涉,然后求出环面在惯性空间的转速。两路光在BS1也被导入同轴光路,在F2产生的干涉也被用于计算转速。光纤陀螺无可动部件,能精确测量该系统相对于惯性空间的旋转速度,是一种高性能的惯性导航陀螺仪。
参考书目
袁希光主编:《传感器技术手册》,国防工业出版社,北京,1986。
发展背景 为了检测和处理种类繁多的信息,需要用传感器将被测量转换成便于处理的输出信号形式,并送往有关设备。在这个过程中采用光信号比电信号有很大的优越性。用光纤传输光信号,能量损失极小,而且光纤的化学性质稳定、横截面小,同时又具有防噪声、不受电磁干扰、无电火花、无短路负载和耐高温等优点。因此70年代末光纤通信技术兴起,光纤传感器也获得迅速发展。
分类 光纤传感器按照使用的光纤不同,通常分为多模光纤传感器和单模光纤传感器两大类。光纤芯内折射率分布对传输频带宽度的影响很大。可以传输多种传输模的称为多模光纤,传输频带宽度可达30兆赫至数百兆赫。芯子与包层极细的一种光导纤维(芯子与包层间折射率差值很小)只能传输一种传输模,称为单膜光纤,传输频带宽度高达10吉赫。多模光纤传感器又分为传光型和光强调制型两种,单模光纤传感器则分为偏振调制型和相位调制型两种。
① 传光型光纤传感器 以多模光导纤维来传输光信号,根据光接受强度不同进行测量,而对被测参数起检测作用的是其他敏感元件。这种传感器多用于工业检测液位、压力、形变、温度、流速、电流、磁场等。它的优点是性能稳定可靠,结构简单,造价低廉,缺点是灵敏度低。图1为光纤液位传感器的原理示意图。
② 光强调制型光纤传感器 在压力作用下光纤产生微弯变形导致光强度变化,从而引起光纤传输损耗的改变,并由吸收、发射或折射率变化来调制发射光,可制成微弯效应的光纤压力传感器(图2)。由于齿板的作用,在沿光纤光轴的垂直方向上加有压力时,光纤产生微弯变形,光波导方式改变,传输损耗增加。这种传感器具有较高的灵敏度。此外,利用光学编码盘配合光纤可制成数字式光纤压力传感器。
③ 偏振调制型光纤传感器 单模光导纤维的偏振特性极易受到外界各种物理量的影响,如在高电场下的克尔效应和在强磁场下的法拉第效应,利用这一原理可制成大电流、高电压测试传感器(图3)。
④ 相位调制型光纤传感器 用单模光导纤维构成干涉仪,外界各种物理量的影响因素能导致光导纤维中光程的变化,从而引起干涉条纹的变动。图4为干涉仪式光纤温度传感器的结构原理。激光器的点光源光束扩散为平行波,经分光器分为两路,一为基准光路,另一为测量光路。外界温度(或压力、振动等)引起光纤长度的变化和相位的光相位变化,从而产生不同数量的干涉条纹,对它的模向移动进行计数,就可测量温度或压力等。这种传感器的优点是有极高的灵敏度,主要用于光纤陀螺、光纤水听器、动态压力和应变测量、机械振动测量等方面。图5为光纤陀螺仪的基本光学系统图。BS1、BS2是两个半透镜,激光透过BS1在BS2被分为两路,各自通过聚光镜分别沿着单模光导纤维环向左右两个方向进行。当两路光重新抵达BS2之后,便被导入同轴光路并在F1上产生干涉,然后求出环面在惯性空间的转速。两路光在BS1也被导入同轴光路,在F2产生的干涉也被用于计算转速。光纤陀螺无可动部件,能精确测量该系统相对于惯性空间的旋转速度,是一种高性能的惯性导航陀螺仪。
参考书目
袁希光主编:《传感器技术手册》,国防工业出版社,北京,1986。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条