1) constitutional supercooling
组分过冷
1.
Growth and constitutional supercooling of Nd:GGG crystal;
Nd:GGG晶体生长及组分过冷研究
2.
The direct experimental data of constitutional supercooling during the crystal growth of near-stoichiometric lithium niobate by double crucible Czochralski method were observed and the theoretical issues of the critical growth rate were treated based on the stability criterion equation.
本文在用双坩埚提拉法生长近化学计量比LiNbO3晶体的过程中观察到了组分过冷的实验数据,同时根据Tiller-Chalmers稳定性判据公式半定量计算了近化学计量比LiNbO3晶体临界生长速率的理值,得到一般电阻加热双坩埚提拉法生长近化学计量比LiNbO3晶体的临界生长速率为0。
3.
Phenomena of mechanical twinning, constitutional supercooling, inclusions of the stoichiometric LiNbO_3 crystal grown by double crucible Czochralski method were observed and analyzed in this paper.
本文对采用双坩埚提拉法(DCCZ)生长的化学计量比LiNbO3晶体中出现的机械双晶、组分过冷、包裹体等宏观生长缺陷进行了观察和分析。
2) over-cooling structure
过冷组织
3) constitutional supercooling
成分过冷
1.
By using nucleation and constitutional supercooling criterion and assuming that the maximum interface growth temperature of phase growth is more stability in the directional solidification process, the composition range is theoretically developed for predicting the nucleation at the plane-front growth of properitectic and peritectic phases in an initial transient zone.
利用成分过冷和充分形核判据以及定向凝固中相稳定生长的最高界面温度假设,在包晶合金定向凝固初始过渡区及其之后两相低速平界面凝固时建立了初生相和包晶相界面前沿发生第二相形核转变所满足的成分条件,确定了不同凝固距离下出现两相平界面凝固带状组织的成分区间,Fe-Ni和Pb-Bi包晶合金理论计算结果与现有的实验结果进行了对比,两者吻合较好。
2.
Based on the constitutional supercooling theory,the condition of G L/ V required by constitutional gradient in the coupling diffusion boundary layer is derived for the rod eutectic.
基于成分过冷理论 ,推导了棒状共晶组元耦合扩散边界层内浓度梯度要求的GL/V条件。
4) Packet filtering
分组过滤
5) transitional maceral
过渡组分
1.
The macerals characteristics of three coal mining in shendong mining area were systemically studied by using coal petrology method, particular to transitional macerals (semi-vitrinite, semi-fusinite and macrinite-1).
应用煤岩学方法研究了神东矿区3个矿的煤岩组分特征,尤其过渡组分(半镜质组、半丝质体和粗粒体-1)特征。
6) grouping process
分组过程
补充资料:组分过冷
组分过冷
eonstitutional suPereooling
组分过冷constitutional supereooling由于熔体中组分变化而产生的过冷现象。1953年J.W.拉特(Rutter)和B.查尔默斯(Chalmers)首先提出组分过冷概念,并进行了系统研究。 熔体在定向凝固时,因溶质分凝,固一液界面前沿熔体中溶质的富集(平衡分凝系数岛<1)或贫化(鹅>l),形成溶质边界层(见晶体生长界面处的溶质边界层)。边界层内熔体的凝固点随溶质浓度变化而改变,边界层外的熔体凝固点仍为几。熔体中凝固点分布如图1曲线a。若界面附近温度分布虽然是正温度梯度如图1曲线b,但图1中的阴影区内,熔体的实际温度低于其凝固点,于是形成因组分原因形成的过冷区。T‘。C)T川!)图1组分过冷区的形成 凝固过程中,界面在偶然因素一于扰下产生局部凸缘(图Za)。若界面前沿存在组分过冷区,凸缘尖端处在较大的过冷度下,生长加速(图Zb)。同时,凸缘向前沿和侧向排出溶质(岛
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条