1) support vector regression
支持向量机回归
1.
Using support vector regression for QSAR study on the aldose reductase inhibitory activity of some flavones;
支持向量机回归方法用于黄酮类化合物醛糖还原酶抑制活性的QSAR研究
2.
A recommendation algorithm based on Support Vector Regression;
一种基于支持向量机回归的推荐算法
3.
GPS elevation transform model based on least squares support vector regression;
基于最小二乘支持向量机回归的GPS高程转换模型
2) support vector machine regression
支持向量机回归
1.
Nonlinear combined prediction of port throughput based on support vector machine regression;
基于支持向量机回归的港口吞吐量非线性组合预测
2.
To improve the predication precision in quantitative structure-activity relationship(QSAR) research,a novel nonlinear combinatorial forecast method based on support vector machine regression and k-near neighbor group was proposed.
为提高定量构效关系(QSAR)研究的预测精度,发展了一种新的基于支持向量机回归(SVR)非线性筛选分子结构描述符、基于k-近邻群的非线性组合预测方法。
3.
Based on the support vector machine regression approximating the limit state function,a procedure is presented to analyze the reliability and corresponding sensitivity of the structural system.
提出了一种基于支持向量机回归近似极限状态方程的系统可靠性分析方法,所提方法首先由支持向量机拟合系统各失效模式的极限状态方程,将复杂或隐式极限状态方程近似等价为显式极限状态方程,然后根据系统各个失效模式的逻辑结构,由高精度的显式极限状态方程方法计算系统的失效概率和参数灵敏度。
3) support vector regression machine
支持向量回归机
1.
Harmonics analysis based on support vector regression machine;
基于支持向量回归机的谐波分析
2.
Gyro drift prediction model based on support vector regression machine;
基于支持向量回归机的陀螺漂移预测模型
3.
Research on structural health monitoring for wing box based on support vector regression machine
基于支持向量回归机的机翼盒段结构健康监测研究
4) support vector regression machines
支持向量回归机
1.
Empirical mode decomposition based on support vector regression machines;
一种基于支持向量回归机的经验模态分解方法
2.
End effects processing in HHT based on support vector regression machines;
基于支持向量回归机的HHT边界效应处理
5) support vector regression(SVR)
支持向量回归机
1.
To improve the forecast ability of regional logistics demand,from the aspect of the intrinsic relations,between the factors of the impact(regional economic and so on)and regional logistics demand,support vector regression(SVR) based on structural risk minimization is applied,by establishing the factors of impact-regional logistics demand SVR forecast model to forecasting regional logistics demand.
为了提高区域物流需求预测的能力,从区域经济等影响因素指标与区域物流需求之间的内在关系的角度,应用基于结构风险最小化准则的支持向量回归机(SVR)方法,建立"影响因素—区域物流需求"SVR预测模型来研究预测区域物流需求问题。
2.
An error correction method for three axial fluxgate sensor based on support vector regression(SVR)is proposed.
提出了一种基于支持向量回归机(SVR)的三轴磁通门传感器误差修正方法。
3.
A novel nonlinear dynamic compensation method based on Wiener model using support vector regression(SVR)was presented in this paper.
提出一种新的利用支持向量回归机(SVR)的非线性动态系统维纳(Wiener)模型补偿方法。
6) Support Vector Regress Machine
回归支持向量机
1.
Forecasting Study of Temporal Data Based on Support Vector Regress Machine;
基于支持回归支持向量机模型,建立了一种对时态数据预测的方法,可以对多属性时态数据进行预测,实验结果表明该方法在预测上具有一定的稳定性和准确性。
补充资料:支持向量机方法
支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。支持向量机算法是一个凸二次优化问题,能够保证找到的极值解就是全局最优解,是神经网络领域域取得的一项重大突破。与神经网络相比,它的优点是训练算法中不存在局部极小值问题,可以自动设计模型复杂度(例如隐层节点数),不存在维数灾难问题,泛化能力强。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条