说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 自纳米化
1)  self-nanocrystallization
自纳米化
1.
Research present on surface self-nanocrystallization technology of metallic materials are summarized.
综述了金属材料表面自纳米化技术的研究现状。
2)  surface self-nanocrystallization
表面自身纳米化
1.
This paper has introduced briefly the characteristics of the surface self-nanocrystallization and the principle of making the materials,and reviewed the progress of the surface self-nanocrystallization in mechanics,corrosion and fatigue,etc.
简要介绍了表面自身纳米化技术的特点,表面自身纳米化材料的制备原理,综述了表面自身纳米化对材料的力学、腐蚀、疲劳等性能的影响。
2.
In this paper, present progress in researches on mechanically induced surface self-nanocrystallization technology of metallic materials is described, involving grain refinement mechanism and properties of the nanostructured surface layer, and preparation method.
综述了机械加工法实现金属材料表面自身纳米化的研究现状,分别从制备方法、纳米化层的形成机制、纳米化层的特点和性能等方面的研究进展进行了阐述,并对表面自身纳米化技术的发展趋势进行了简单的分析。
3.
The USSP induced surface nanocrystallization products were characterized by XRD,the fatigue tests were carried out in 316L stainless steel before and after USSP treatment,and reviewed the progress of the surface self-nanocrystallization in fatigue.
文章分析研究了表面纳米层的微观组织结构特征,并对试件进行了疲劳试验,分析结果后,简述了表面自身纳米化对材料疲劳性能的影响。
3)  surface self-nano-crystallization
表面自纳米化
1.
The research state of self-nanocrystallization technology on iron and steel surface, nano-crystallization principle and the application prospect of surface self-nano-crystallization were introduced.
介绍了钢铁材料表面自纳米化的研究现状、纳米晶化机制和表面自身纳米化技术的应用前景,表明表面自身纳米化能显著提高钢铁材料的表面强度,硬度、耐磨和耐疲劳性能,在化学热处理和电化学防护方面也展示了广阔的应用前景。
4)  self-assembling nanoelectrochemistry mech-anism
纳米电化学自组织机制
5)  nanocrystallization
纳米晶化
1.
DSC study on nanocrystallization of amorphous Fe_(78)Si_9B_(13) alloy treated by low frequency pulse magnetic field;
低频脉冲磁场处理非晶Fe_(78)Si_9B_(13)合金纳米晶化的DSC研究
2.
Nanocrystallization and Soft Magnetic Properties of FeCuNbSiB Amorphous Alloys
FeCuNbSiB非晶合金的纳米晶化及其软磁性能
3.
Study on phase transformation kinetic mechanism of nanocrystallization of Fe-based amorphous alloy treated by low frequency pulse magnetic field
铁基非晶磁致低温纳米晶化的相变动力学机理研究
6)  nano-crystallization
纳米晶化
1.
The nano-crystallization behavior of amorphous pure Ni during compression deforma- tion has been investigated by using a molecular dynamics simulation.
利用分子动力学方法对非晶纯镍材料压缩变形过程中纳米晶化现象进行了模拟,研究了非晶变形过程中绝热温升对非晶晶化的影响,结果表明,绝热温升不是导致非晶晶化的主要因素。
2.
The treatment of low-frequency pulsating magnetic field is a brand-new process for the nano-crystallization of amorphous alloy without heat treatment.
低频脉冲磁场处理是一种崭新的非热处理型非晶纳米晶化的方法·针对非晶合金Fe78Si9B13进行了低频脉冲磁场处理,用M ssbauer谱仪、透射电子显微镜观察处理后样品的微观结构变化·研究表明,低频脉冲磁场可促进非晶合金Fe78Si9B13发生纳米晶化,在所用脉冲磁场参数下,晶粒尺寸为2~10nm,且试样温升小于20℃·结合脉冲磁场参数对晶化量的影响,初步探讨了脉冲磁场对非晶合金Fe78Si9B13纳米晶化的作用机制
3.
It is further proved that nano-crystallization of the amorphous alloy under shock waves is an abundantly meaningful crystallization phenomenon implying a novel mechanism, and the model of fluid-.
进一步证实了激波纳米晶化是一种包含着新机理的寓意丰富的晶化现象 。
补充资料:看纺织印染中应用纳米材料和纳米技术

纺织印染中应用纳米材料和纳米技术时,除了要解决纳米材料的制备技术之外,重要的是要解决好纳米材料的应用技术,其中关键问题是使纳米粒子和纺织印染材料的基本成分(即聚合物材料)之间处于适当的结合状态。印染中,纳米粒子在聚合物基体中的分散和纳米粒子在聚合物表面的结合是主要的应用技术问题。  


    制备聚合物/无机纳米复合材料的直接分散法,适用于各种形态的纳米粒子。印染中纳米粒子的使用一般采用直接分散法。但是由于纳米粒子存在很大的界面自由能,粒子极易自发团聚,利用常规的共混方法不能消除无机纳米粒子与聚合物基体之间的高界面能差。因此,要将无机纳米粒子直接分散于有机基质中制备聚合物纳米复合材料,必须通过必要的化学预分散和物理机械分散打开纳米粒子团聚体,将其均匀分散到聚合物基体材料中并与基体材料有良好的亲和性。直接分散法可通过以下途径完成分散和复合过程:  


    高分子溶液(或乳液)共混:首先将聚合物基体溶解于适当的溶剂中制成溶液(或乳液),然后加入无机纳米粒子,利用超声波分散或其他方法将纳米粒子均匀分散在溶液(或乳液)中。有人将环氧树脂溶于丙酮后加入经偶联剂处理过的纳米TiO2,搅拌均匀,再加入 40wt%的聚酰胺后固化制得了环氧树脂/TiO2纳米复合材料。还有人将纳米SiO2粒子用硅烷偶联剂处理后,改性不饱和聚酯。  


    熔融共混:将纳米无机粒子与聚合物基体在密炼机、双螺杆等混炼机械上熔融共混。如将PMMA和纳米SiO2粒子熔融共混后,双螺杆造粒制得纳米复合材料。又如利用偶联剂超声作用下处理纳米载银无机抗菌剂粒子,分散制得PP/抗菌剂、PET/抗菌剂、PA/抗菌剂等复合树脂,然后经熔融纺丝工艺加工成抗菌纤维。研究表明,将经过表面处理的纳米抗菌剂粒子通过双螺杆挤出机熔融混炼,在聚合物中可以达到纳米尺度分散,获得了具有良好综合性能的纳米抗菌纤维,对大肠杆菌、金黄色葡萄球菌的抗菌率达到95%以上(美国AATCC-100标准)。  


    机械共混:将偶联剂稀释后与碳纳米管混合,再与超高分子量聚乙烯(UHMWPE)混合放入三头研磨机中研磨两小时以上。将研磨混合物放入模具,热压,制得功能型纳米复合材料。  


    聚合法:利用纳米SiO2粒子填充(Poly(HEMA))制备了纳米复合材料。纳米SiO2粒子首先被羟乙基甲基丙烯酸(HEMA)功能化,然后与HEMA单体在悬浮体系中聚合。还有利用SiO2胶体表面带酸性,加入碱性单体4-乙烯基吡咯进行自由基聚合制得包覆型纳米复合材料。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条