1) paleohydrocarbon-water contact
古油水界面
1.
Limitation of restoring the paleohydrocarbon-water contact by GOI;
含烃流体包裹体丰度法追溯古油水界面的局限性
2) paleohydrocarbon water contact restoration
古油水界面恢复
3) oil/water interface
油水界面
1.
Molecular dynamics simulations on the aggregation of AOT at oil/water interface;
油水界面上AOT聚集行为的分子动力学模拟
2.
In this paper research on the oil/water interfacial shear viscosity is reviewed and prospects for the study of oil/water interfaces are also put forward.
界面剪切黏度是表征乳液油水界面膜性质的重要参数之一,界面剪切黏度反映了油/水界面膜的强度。
4) oil-water interface
油水界面
1.
Analysis of dominant factors of the oil-water interface in the oil reservoir of Sanjianfang Formation,Shanshan Oilfield;
鄯善油田三间房组油藏油水界面分布状态的主导因素分析
2.
Adsorption behavior of surfactant in oil-water interface;
表面活性剂在油水界面的吸附行为
3.
Study of the method to extract oil-water interface automatically from MDT data;
基于MDT测试资料的储层油水界面自动提取方法研究
5) oil-water interface
油-水界面
1.
Mass transfer kinetics of PVP across oil-water interface by using micro visualization technique;
在油-水界面上聚乙烯吡咯烷酮传质动力学的微可视化
2.
By analysis of gradient curves about formation pressure,improved method is advanced which can automatically pick up oil-water interface of oil reservoir from gradient curves about formation pressure by the third power of inserting value function and maximum value principle.
经对地层压力梯度线的分析,提出了基于地层压力梯度线上利用三次样条插值函数和最大值原理自动拾取油藏油-水界面的改进方法。
3.
Adsorption properties of soy glycinin adsorbed at the air-water and oil-water interfaces were studied by dynamic drop shape analysis.
采用动态滴形分析法研究了大豆球蛋白在空气-水和油-水界面上的吸附特性,主要检测了大豆球蛋白吸附在空气-水、纯的花生油-水和正十四烷-水界面上的界面张力和膨胀流变特征参数随吸附时间的变化。
6) oil-water contact
油水界面
1.
Determining both oil-water contact and thin interbed by analysing the resistivity log data of horizontal borehole;
利用水平井电阻率测井资料判断油水界面和薄夹层
2.
In recent years, it can be found that there is an obvious difference between the present oil-water contact and the past one by the drilling of new infilling wells in Sanjianfang reservoir; and in the whole, the oil-water contact takes on a new situation that is high in the north and low in the south, high in the west and low in the east.
近期新钻加密井发现三间房组油藏油水界面分布特征与开发初期所认为的情况有明显差别,整体呈北高南低、西高东低特点。
3.
The result shows that the oil-water contact is controlled by the structure,fault,sand distribution,petrophysical property and diagenetic epigenesist and is an irregular dip plane;reserves distribution is well related to the distribution of braided channel micro-facies in the.
结果表明:油水界面受构造、断裂、砂体展布、物性和成岩后生作用等多因素控制,为一不规则的倾斜面;储量分布与扇三角洲平原亚相的辫状水道微相分布具有较好的相关性;辫状水道微相是下一步扩边挖潜的有利目标。
补充资料:古登堡界面
地震波除了在地面以下约33公里处有一个显著的不连续面(称为莫霍界面)之外,在软流圈之下,直至地球内部约2900公里深度的界面处,属于地幔圈。由于地球外核为液态,在地幔中的地震波s波不能穿过此界面在外核中传播。p波曲线在此界面处的速度也急剧减低。这个界面是古登堡在1914年发现的,所以也称为古登堡界面,它构成了地幔圈与外核流体圈的分界面。整个地幔圈由上地幔(33~410公里深度的b层,410~1000公里深度的c层,也称过渡带层)、下地幔的d′层(1000~2700公里深度)和下地幔的d″层(2700~2900公里深度)组成。地球物理的研究表明,d″层存在强烈的横向不均匀性,其不均匀的程度甚至可以和岩石层相比拟,它不仅是地核热量传送到地幔的热边界层,而且极可能是与地幔有不同化学成分的化学分层。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条