1) (Pb1-xSrx)TiO3 ferroelectric ceramic
(Pb1-xSrx)TiO3铁电陶瓷
2) Pb 1-x Sr x)TiO 3 ceramic
(Pb1-xSrx)TiO3系陶瓷
3) (Pb_(1-x)Sr_x)TiO_3 ferroelectric thin films
(Pb1-xSrx)TiO3铁电薄膜
4) (Pb 1-x Sr x)TiO 3 ferroelectric thin films
(Pb1-xSrx)TiO3系铁电薄膜
5) (Pb1-xSrx)TiO3 thin films
(Pb1-xSrx)TiO3薄膜
6) (Pb1–xSrx)TiO3 thin films
(Pb1–xSrx)TiO3薄膜
补充资料:铁电陶瓷
某些电介质可自发极化,在外电场作用下自发极化能重新取向的现象称铁电效应。具有这种性能的陶瓷称铁电陶瓷。铁电陶瓷具有电滞回线和居里温度。在居里温度点,晶体由铁电相转变为非铁电相,其电学、光学、弹性和热学等性质均出现反常现象,如介电常数出现极大值。1941年美国首先制成介电常数高达1100的钛酸钡铁电陶瓷。
主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。
铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。此外,还有一种透明铁电陶瓷,例如氧化铅(镧)、氧化锆(钛)系透明陶瓷,具有电光效应(即其电畴状态的变化,伴随有光学性质的改变)。通过外加电场对其电畴状态的控制、产生电控双折射、电控光散射、电诱相变和电控表面变形等特性。可用于制造光阀、光调制器、光存贮器、光显示器、光电传感器、光谱滤波器、激光防护镜和热电探测器等。
主要的铁电陶瓷系统有钛酸钡-锡酸钙和钛酸钡-锆酸钡系高介电常数铁电陶瓷,钛酸钡-锡酸铋系介电常数变化率低的铁电陶瓷,钛酸钡-锆酸钙-铌锆酸铋和钛酸钡-锡酸钡系高压铁电陶瓷以及多钛酸铋及其与钛酸锶等组成的固溶体系低损耗铁电陶瓷等。铁电陶瓷的制造工艺大致相同。例如,钛酸钡系陶瓷用超纯、超细的等摩尔碳酸钡和二氧化钛原料混合均匀,在1150°C左右预烧成钛酸钡。加入少量为改善工艺和电性能所需要的附加剂,如产生阳离子缺位的三价镧、三价铋或五价铌离子附加剂,产生氧离子空位的三价铁、三价钪或三价铝离子,置换钡离子使晶格畸变的二价锶离子以及生成液相、降低烧成温度的氧化镁或二氧化锰等附加剂。经过粉磨或其他方法充分混合,用干压、辊压或挤压等方法成型,再在1350°C左右的氧化气氛中烧成。还可采用热压烧结,高温等静压烧结等方法,以提高产品的质量。
铁电陶瓷的特性决定了它的用途。利用其高介电常数,可以制作大容量的电容器、高频用微型电容器、高压电容器、叠层电容器和半导体陶瓷电容器等,电容量可高达0.45μF/cm2。利用其介电常数随外电场呈非线性变化的特性,可以制作介质放大器和相移器等。利用其热释电性,可以制作红外探测器等。此外,还有一种透明铁电陶瓷,例如氧化铅(镧)、氧化锆(钛)系透明陶瓷,具有电光效应(即其电畴状态的变化,伴随有光学性质的改变)。通过外加电场对其电畴状态的控制、产生电控双折射、电控光散射、电诱相变和电控表面变形等特性。可用于制造光阀、光调制器、光存贮器、光显示器、光电传感器、光谱滤波器、激光防护镜和热电探测器等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条