1) inner product
内积
1.
Differential expressions of inner products in the Hilbert Structures for some Bargmann Fock spaces;
Bargmann-Fock空间的Hilbert结构中内积的微分表示
2.
Application of Inner Product to Determination of Concentration
内积在溶液浓度测定中的应用
3.
For interpreted preceding N terms of inner product of arithmetic progression with 2-order symmetric sequence with property of sequence the expression is be made up of the same like with generalized diagram multiplication method symmetric formula.
利用对称数列性质分析等差数列与二阶对称数列的内积,建立与广义图乘法对称型公式一致的数列内积的对称型公式。
2) inner-product
内积
1.
A new integration method is proposed to simplify the strain rate vector inner-product by the mean value theorem in a cylindrical coordinate system.
提出以积分中值定理简化应变速率矢量内积的积分方法。
2.
Its inner-product is integrated term by term.
首先将有鼓形平板锻造等效应变速率表示成二维应变速率矢量,化为矢量内积后进行逐项积分;其次将逐项积分结果求和并引进鼓形参数计算公式,进而得到应力影响因子的解析解。
3.
First, effective strain rate for disk forging with bulge is expressed in terms of two-dimensional strain rate vector and its inner-product term by term integrated.
首先将有鼓形圆盘锻造等效应变速率表示成二维应变速率矢量,对该矢量的内积进行了逐项积分;其次,将逐项积分结果求和并证明了求和结果与传统直接积分法的塑性功率表达式相同;最后由速度场推导出圆盘锻造应力影响因子的解析解与相应的鼓形参数b的计算公式。
3) interior product
内积
1.
By using the analysis method,the author gets two inequalities about the relation of the interior product and the norm in the general,complex Hilbert space.
用分析法得到了一般复Hilbert空间中两个内积与范数关系的不等式,由此不等式可推出几个可以看作是Cauchy-Schwarz不等式的反向不等式。
2.
By using the analysis method,this paper gets a inequality about the relation of the interior product and the norm in the separable,complex Hilbert space.
用分析法得到了可分复Hilbert空间中一个内积与范数关系的不等式 ,由此不等式可推出几个可以看作是Cauchy-Schwarz不等式的反向不等
3.
By using the analysis method,this paper gets a inequality about the relation of the interior product and the norm in the complex Hilbert space L~2(E,μ),and furthermore,discusses some application of it.
用分析法得到了复Hilbert空间L2(E,μ)中一个关于内积与范数关系的不等式,并讨论了它的一些应用。
6) Deposition within the membrane
膜内沉积
补充资料:内积
内积(dot product,scalar product,inner product)是一种矢量运算。
设矢量a=[a1,a2,...an],b=[b1,b2...bn]
则矢量a和b的内积表示为:
(a,b)=a1×b1+a2×b2+……+an×bn
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条