1) β-HMX
β-HMX
1.
Comparision of Different Quantization Methods for Calculating the Structure of β-HMX;
不同量子化方法计算β-HMX分子结构的比较
2) crystalline β-HMX
β-HMX晶体
3) β' to β transformation
β'→β转变
1.
The results show that the beginning and ending temperature of β' to β transformation in Cu-Zn alloy is 446.
用DSC法研究了Cu-Zn合金组织中β′→β转变动力学。
4) β/β″-Al_2O_3
β/β″-Al_2O_3
1.
Lithium and magnesium co-stabilized β/β″-Al_2O_3 films were fabricated by the reaction between the spinel-α-Al_2O_3 composite substrate and the vapour of Li_2O and Na_2O.
通过MgAl_2O_4-α-Al_2O_3复合相陶瓷基体与Li_2O、Na_2O气氛的反应制备了Li_2O和MgO共同稳定的Naβ/β″-Al_2O_3膜。
5) β-sialon
β-sialon
1.
Density technical study of bauxite-based β-SiAlON-corundum;
矾土基β-SiAlON-刚玉料致密度的研究
2.
Microwave Synthesis of β-Sialon;
微波合成β-Sialon
3.
Preparation of β-Sialon from kaolin-hydrazine intercalation complex;
高岭土插层材料制备β-Sialon材料
6) β Phase
β相
1.
The β phase of casting ZK60 alloy states were continuing,and the mechanical properties and deformability were poor.
对铸态及固溶处理后的ZK 60镁合金的组织、拉伸和锻造性能进行了研究,铸态ZK 60镁合金中β相成连续网状分布,力学性能和变形极限较低,经390℃×16h固溶处理后,β相部分或全部溶入基体中,呈不连续点状分布,抗拉强度和屈服强度较铸态提高14%和28%,伸长率(13%)较铸态提高70%。
2.
The electron structures of the interface between GP zone with L_(10) structure(the same in later) and the matrix and the interface between β phase and the matrix in Al-Mg-Si alloy were calculated using the Empirical Electronic Theory in solid and molecules(EET).
运用EET理论对A l-M g-S i合金GP区(L10型,下同)、β相(M g2S i)与基体的界面电子结构进行计算,着重从界面电子角度反映时效过程中GP区、β相与基体的界面结合性质、界面原子状态变化及界面对合金有关力学性能的影响,并分析原子状态变化的原因。
3.
The variations in mechanical properties of W-Ni-Fe heavy alloy with high Ni/Fe ratio(9/1) and the precipitation behavior of β phase in its binding phase during strain-aging were studied.
研究预应变时效高NiFe比(91)钨合金的性能及粘结相中β相的沉淀行为。
参考词条
补充资料:HMX
分子式:
CAS号:
性质:学名为1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(1,3,5,7-tetranitro-1,3,5,7-tetrazcyclooctane),又称环四亚甲基四硝胺(cyclotetramethylenetetranitramine)。是当前已使用的能量水平最高、综合性能最好的单质炸药。白色晶体。有а、β、γ、及δ四种晶型。可互相转化,但各有不同的温度稳定范围,其物理常数也各异。β型为实用的稳定晶型,一般所列性能均系指该型的。几乎不溶于水、二硫化碳、甲醇及异丙醇等,难溶于苯、氯仿、四氯化碳、二氯乙烷、二噁烷及醋酸等,略溶于乙腈、丙酮及环乙酮(室温下溶解度约2%),易溶于二甲基亚砜、γ-丁内酯及二甲基甲酰胺,并能与后者生成1:1(摩尔)的分子络合物。密度1.905g/cm3。熔点278.5~280℃。爆发点327℃(5s);密度1.89g/cm3时的爆速9.11km/s;做功能力486mL(铅寿扩孔值)或150%(TNT当量);猛度25mm(铅柱压缩值);撞击感度100%;摩擦感度100%。100℃下第一个48h失重0.05%。以贝克曼法(Backmann method,也称醋酐法)制造,即乌洛托品-醋酸溶液,硝酸铵-硝酸溶液和醋酐分二段同时按比例加入冰醋酸(底液)中,即得奥克托今。还有醋酐法制、DADN法制、TAT法制、综合法制。以奥克托今为基的混合炸药用于导弹、核武器和反坦克导弹的战斗部装药,或作为耐热炸药用于深井射孔弹,也用作高性能固体推进剂和枪炮发射药的组分。
CAS号:
性质:学名为1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷(1,3,5,7-tetranitro-1,3,5,7-tetrazcyclooctane),又称环四亚甲基四硝胺(cyclotetramethylenetetranitramine)。是当前已使用的能量水平最高、综合性能最好的单质炸药。白色晶体。有а、β、γ、及δ四种晶型。可互相转化,但各有不同的温度稳定范围,其物理常数也各异。β型为实用的稳定晶型,一般所列性能均系指该型的。几乎不溶于水、二硫化碳、甲醇及异丙醇等,难溶于苯、氯仿、四氯化碳、二氯乙烷、二噁烷及醋酸等,略溶于乙腈、丙酮及环乙酮(室温下溶解度约2%),易溶于二甲基亚砜、γ-丁内酯及二甲基甲酰胺,并能与后者生成1:1(摩尔)的分子络合物。密度1.905g/cm3。熔点278.5~280℃。爆发点327℃(5s);密度1.89g/cm3时的爆速9.11km/s;做功能力486mL(铅寿扩孔值)或150%(TNT当量);猛度25mm(铅柱压缩值);撞击感度100%;摩擦感度100%。100℃下第一个48h失重0.05%。以贝克曼法(Backmann method,也称醋酐法)制造,即乌洛托品-醋酸溶液,硝酸铵-硝酸溶液和醋酐分二段同时按比例加入冰醋酸(底液)中,即得奥克托今。还有醋酐法制、DADN法制、TAT法制、综合法制。以奥克托今为基的混合炸药用于导弹、核武器和反坦克导弹的战斗部装药,或作为耐热炸药用于深井射孔弹,也用作高性能固体推进剂和枪炮发射药的组分。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。