1) utmost bedrock ply
极限基岩厚度
1.
Through the way of numerical simulation and locale measurement,we found the safety utmost bedrock ply at the condition of thin bedrock and thick coal seam in Sima Coal Mine.
通过数值模拟和现场实测的方法,研究了司马矿薄基岩厚煤层开采条件下,保证安全开采的极限基岩厚度。
2) limit thickness
极限厚度
3) bedrock pillar thickness
基岩柱厚度
1.
A borehole water injection method was applied to probe the mining failure height of the strata after the coal mining operation of the fully mechanized longwall caving mining face in Yangcun Mine and also to probe the bedrock pillar thickness in the direct roof No.
通过采用钻孔注(放)水法探测了杨村煤矿综放面采后覆岩采动破坏高度;同时,探明了305工作面浅部顶板基岩柱厚度;采用无线电波坑道透视方法,查明了工作面内的隐伏小断层及其延展情况。
4) scabbing limit thickness
痂斑极限厚度
1.
Verifying calculations on experiential formulas of penetration and scabbing limit thickness of concrete target under rigid missiles impact;
刚性弹丸撞击下混凝土板侵彻极限深度与痂斑极限厚度经验公式的验算
5) limited rock cover
极限顶板厚度
1.
Besidest,he differences and relations among limited rock cover,minimum rock cover and rational rock cover are discussed.
提出海底隧道"极限顶板厚度"的概念,阐述其与"最小顶板厚度"和"合理顶板厚度"的区别与联系,并给出采取辅助施工措施条件下极限顶板厚度的确定方法。
6) ultimate analysis/thickness of the cover
极限分析/保护层厚度
补充资料:上极限和下极限
上极限和下极限
upper and lower limits
上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条