1) physical simulation experiment
物理模拟实验
1.
The discussion of three physical simulation experiments for oil and gas reservoir formation;
对油气成藏研究中三个物理模拟实验的探讨
2.
Through physical simulation experiments and the statistical analyses of practical data from oilfields, the authors intended to make a systematic analysis of the influence of reservoir interlayer heterogeneity on the differential injection of hydrocarbon into a trap in secondary migration .
通过物理模拟实验及油田实际数据的统计分析 ,文中探讨了储层层间非均质性对油气二次运移过程中油气充注圈闭的控制作用 ,首次提出了油气充注的渗透率临界级差的概念。
3.
By the laboratory physical simulation experiments we investigate the effect of polymer and surfactant in ASP slug on oil displacing efficiency, the experimental study on reducing the chemical amount are also conducted.
通过室内物理模拟实验 ,研究了三元体系中聚合物、表面活性剂浓度对驱油效果的影响 ,并进行了降低化学剂用量的实验研究 ,结果表明 ,三元体系与原油粘度比控制在 2∶1~ 5∶1范围内 ,驱油效率才能达到 2 0 %以上 ,在适当的聚合物用量条件下 ,可以降低三元体系中的表面活性剂和碱的用量 ;三元体系配方中表面活性剂与聚合物用量有一定的依赖关系 ,在较高聚合物用量条件下 ,可以在一定范围内降低表面活性剂用量 ;反之 ,降低表面活性剂用量受到一定限制。
2) physical modeling experiment
物理模拟实验
1.
The reservoir-forming mode of this field was simulated by physical modeling experiment.
选取库车坳陷克拉2气田作为研究对象,利用物理模拟实验模拟了克拉2气田成藏模式。
3) physical experiment analogue
实验物理模拟
1.
As a new teaching mode, the course of physical experiment analogue is put forward.
物理实验教学质量的提高长期受到经费、实验用房、人力条件的困扰,利用计算机开设的实验物理模拟 课能有效地解决上述问题,为提高物理实验的教学质量提供了一种新的教学模式。
4) physical experiment simulation
物理实验模拟
5) dynamic physical modeling experiments
动态物理模拟实验
1.
Study on the effect of interbed length on bottom-water coning by dynamic physical modeling experiments;
用动态物理模拟实验研究夹层长度对底水锥进的影响
6) core flooding experiment
物理模拟驱油实验
补充资料:核爆炸物理模拟
核爆炸物理模拟
physical simulation for nuclear xplosion
hebaozha wuli moni核爆炸物理模拟(physiea一、imulati。。fornuclear explosion)在实验室内创造与核爆炸局部类似的条件,对核武器物理问题进行的分解研究。其目的在于观察、掌握核武器爆炸主要物理过程的现象与规律,检验用于核武器设计的计算机程序,维护和保持核武器的安全性、可靠性和有效性。 核武器爆炸物理过程的模拟包括爆轰和动高压物理、炸药驱动内爆动力学、高温高密度等离子体状态下的流体动力学及热核反应动力学等。主要模拟手段有流体动力学爆轰实验、脉冲功率技术和激光驱动惯性约束聚变等。 流体动力学爆轰实验是模拟核装置初级内爆动力学过程的最有效手段。在炸药爆轰作用下,物体速度可达数千米每秒,压力接近拍帕〔斯卡}(10巧Pa),爆轰实验可提供相当于核反应开始前物质在运动过程中的形状和状态。应用先进的光学和电子学诊断技术,尤其是脉冲X射线辐射照相技术,可达到以亚毫米精度测量高速运动物体瞬间的形状和界面位置,确定被压缩物体的密度分布,还可以进行计算机辅助层析照相,得到三维立体信息。爆轰实验还广泛用于核装置武器化试验、库存武器性能检测、武器安全性能研究、武器材料断裂行为和动态力学性能测量,以及物体流体动力学界面不稳定性研究等。 利用脉冲功率技术(电容器组、爆炸磁压缩装置和电子加速器等)提供的数十至数百兆安冲击大电流,产生强大的电磁力,可把几十立方厘米体积的物体高速压缩到比炸药爆轰压缩所得的温度更高(达兆开)和压力更大(达几拍帕),并维持0.1一1微秒的时间。电磁驱动实验可用来研究材料的动高压性态、核武器内爆组件缺陷的影响、等离子体内爆的界面不稳定性和极端条件下的物质性质,并能产生大量的软X射线用于核武器效应模拟研究。美、俄两国有关实验室用电磁驱动内爆技术,已能造成每立方厘米物质的内能相当于上百克炸药能量的高能量密度状态,并正在建造储能数十兆焦耳的大型设施,创造更大体积和更高温度、压力范围的实验条件。 激光聚变是开发新能源的有效途径之一,它的物理问题与热核武器的某些物理问题相似。所以,许多科学家在致力于利用实验室高功率激光产生高温高压等离子体诱发聚变,实现能量增益(即产生的能量大于消耗的能量)的同时,也在模拟研究核武器爆炸过程中的某些重要问题。 20世纪60年代,激光器间世不久,科学家就利用激光所具有的高功率密度特性,使聚变燃料达到高温,发生聚变反应。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条