1) magnetic powder
磁粉
1.
Preparation of TiO_2 film containing magnetic powder on biomedical metallic substrate and study on its blood compatibility;
医用金属材料表面含磁粉的TiO_2薄膜的制备及其血液相容性
2.
Effect of Mn in HDDR anisotropic NdFeCoB magnetic powder;
Mn在HDDR各向异性NdFeCoB磁粉中的作用
3.
Effect of magnetic powder and coupling treatment on properties of rubber bonded rolled magnets;
磁粉及其偶联处理对压延取向橡胶粘结磁体性能的影响
2) magnetic powders
磁粉
1.
High-performance magnetic powders are key materials for preparing differ-ent kinds of fonded magnets with special requirenents.
高性能磁粉是生产各种特殊要求的粘结磁体的关键原料。
2.
Silane coupling agent was used to coat the surface of Sm2Fe17Nx magnetic powders.
利用硅烷偶联剂KH550对Sm2Fe17Nx永磁粉末进行了表面包覆处理,研究了不同包覆状态的磁粉在300℃以下的氧化行为及其磁性能的变化规律。
3.
It follows that an ideal epoxy should be solid at room temperature, with bigger epoxy number and have a good compatibility with magnetic powders.
认为常温下为固态、环氧值较高且与磁粉表面相容性好的树脂是制备粘结 Nd Fe B磁体的理想粘结剂。
3) magnetic particle
磁粉
1.
Spherical and monodisperse Co Ni and Fe Co Ni systems magnetic particles were synthesized by the polyol process over a wide size range lying from a few micrometers to a few tens of nanometers,and the microwave magnetic properties of them were investigated in the 2-18 GHz frequency range.
通过多元醇还原法可以制得尺寸范围从几微米到几十纳米的球形、单分散和Co-Ni系和Fe-Co-Ni系磁粉,并在2~18GHz频率范围内研究其微波磁特性。
2.
The result showed that the spinning performance, drawing property and thermal property all decreased with the increase of magnetic particle content.
采用皮芯层复合纤维纺丝机纺制不同磁粉含量的聚丙烯 (PP)磁性纤维 ,对纤维的纺丝性能、拉伸性能、热性能进行了研究。
3.
The adsorption behavior of hyperdispersants with poly ε caprolactone solvatable chain on acicular magnetic particles was investigated.
超分散剂在磁粉表面的吸附量由其锚固基团和溶剂化链共同决定。
4) magnet powder
磁粉
1.
Anisotropic NdFeCoZrBGa magnet powder produced by HDDR process;
改进HDDR工艺制备NdFeCoZrBGa各向异性磁粉
2.
The results indicate that the magnet powder with good mag.
0)各向异性永磁磁粉,研究了歧化氢压、歧化温度、再复合温度及合金元素Co的添加对Nd12。
5) magnetic fly-ash powder
粉煤灰磁粉
1.
The replacement deposition method is applied to electroless copper-plating on the magnetic fly-ash powder.
粉煤灰磁粉是热电厂生产过程产生的固体废弃物粉煤灰中的一种成分,由于其有内在的磁性和微导电性,通过表面金属化后,能用于制备电磁屏蔽和吸波材料。
6) coated magnetic tape
磁粉膜磁带
补充资料:磁粉
一种硬磁性的单畴颗粒。它与粘合剂、溶剂等制成磁浆,涂布在塑料或金属片基(支持体)的表面,就可制成磁带、磁盘、磁性卡片等磁记录材料。磁粉对磁记录材料的性质影响极大。因此,对磁粉有一定的要求:①比饱和磁化强度σs和矫顽力Hc要大;②颗粒呈微细针状而均匀;③在磁浆中有高的分散性和填充性;④磁性稳定。磁粉要同时满足上述诸要求比较困难。常用的磁粉有氧化物磁粉和金属磁粉两大类。(见彩图)
氧化物磁粉 用量最大的一类磁粉,主要有三种:
①氧化铁磁粉 Fe3O4(磁铁矿的主要成分)是很早的磁性材料之一。它的σs和Hc都高于使用最多的γ-Fe2O3,但由于它的不稳定性和复印 (复印是指磁带层与层之间相互磁化而发生干扰的特性)大等缺点而逐渐为γ-Fe2O3所代替。γ-Fe2O3自20世纪50年代投入生产,迄今仍占磁性材料的主导地位。各生产厂制造γ-Fe2O3基本上仍以水合氧化铁FeOOH(即铁黄,Fe2O3·H2O 的简写)为起始材料进行以下热处理而生产:
产品的好坏,在很大程度上取决于起始材料。因此,如何获得晶形好、粒度分布窄的铁黄,并保持它在以后的处理过程中不受破坏(如产生孔洞和烧结而破坏针形等),是提高产品性能的关键。近年来,为此进行不少工作,如在反应液中加入镍、铬、锌等元素的化合物;改变传统工艺;以γ-FeOOH(γ-铁黄)作起始材料;并在α-或γ-铁黄表面包覆一层防烧结剂;最后对制成的γ-Fe2O3进行实密化和表面处理,使最终产物具有良好的分散性等。
②二氧化铬磁粉 1961年美国杜邦公司发表了水热法合成单相铁磁性二氧化铬的方法,1967年开始商品化生产。二氧化铬的Hc高,其他性能也优于γ-Fe2O3,主要用于高档录音带和录像带。二氧化铬是在高温(400~525℃)高压(50~300MPa)下分解三氧化铬而得。加催化剂可降低反应温度和压力。这种磁粉由于成本高及对磁头磨损大等缺点,未能广泛使用。目前在进行改进二氧化铬的工作,如常压下制备和进行包钴的研究等。
③钴-氧化铁磁粉 为提高氧化铁磁粉的Hc,人们早就想采用在其中加钴的方法,迄今为止最成功的是包钴型磁粉。该法最早是由美国于1971年提出,包钴可分为两种:使用γ-Fe2O3为原料在水中分散后表面包覆Co(OH)2或形成钴铁氧体CoxFe3-xO4而成。后者的Hc可高出一倍左右。1973年日本东京电气化学工业公司研制出的Avi-lyn磁粉即属此类。它的Hc高并可在一定范围内变化而对磁头的磨损仅为二氧化铬的1/5。包钴磁粉制成的磁带不仅与二氧化铬磁带有完全的互换性,而且彩色信号输出电平与信噪比等都超过了二氧化铬磁带。
近年来, 由于高Hc复制母带、 磁性卡片及垂直记录等对高Hc磁粉的特殊需要,六角结构的钡铁氧体(Hc>2000Oe)及其他高Hc永磁材料也被用作记录材料而受到重视。1982年日本用玻璃结晶法研制出钡铁氧体单畴细粉并制成涂布型垂直磁带。
金属磁粉 它的高σs(两倍于γ- Fe2O3)和高Hc(>1000 Oe) 使它作为高密度记录材料早就引起人们的重视,由于稳定性差和在磁浆中不易分散等缺点,一直未能实用化。1978年金属粉商品磁带研制成功,这方面的发展极为迅速。制造方法主要有:①针状氧化铁在氢气中还原;②用强还原剂在磁场作用下于水溶液中还原金属盐;③真空蒸发凝聚等。
参考书目
李荫远、李国栋著:《铁氧体物理学》,科学出版社,北京,1978。
氧化物磁粉 用量最大的一类磁粉,主要有三种:
①氧化铁磁粉 Fe3O4(磁铁矿的主要成分)是很早的磁性材料之一。它的σs和Hc都高于使用最多的γ-Fe2O3,但由于它的不稳定性和复印 (复印是指磁带层与层之间相互磁化而发生干扰的特性)大等缺点而逐渐为γ-Fe2O3所代替。γ-Fe2O3自20世纪50年代投入生产,迄今仍占磁性材料的主导地位。各生产厂制造γ-Fe2O3基本上仍以水合氧化铁FeOOH(即铁黄,Fe2O3·H2O 的简写)为起始材料进行以下热处理而生产:
产品的好坏,在很大程度上取决于起始材料。因此,如何获得晶形好、粒度分布窄的铁黄,并保持它在以后的处理过程中不受破坏(如产生孔洞和烧结而破坏针形等),是提高产品性能的关键。近年来,为此进行不少工作,如在反应液中加入镍、铬、锌等元素的化合物;改变传统工艺;以γ-FeOOH(γ-铁黄)作起始材料;并在α-或γ-铁黄表面包覆一层防烧结剂;最后对制成的γ-Fe2O3进行实密化和表面处理,使最终产物具有良好的分散性等。
②二氧化铬磁粉 1961年美国杜邦公司发表了水热法合成单相铁磁性二氧化铬的方法,1967年开始商品化生产。二氧化铬的Hc高,其他性能也优于γ-Fe2O3,主要用于高档录音带和录像带。二氧化铬是在高温(400~525℃)高压(50~300MPa)下分解三氧化铬而得。加催化剂可降低反应温度和压力。这种磁粉由于成本高及对磁头磨损大等缺点,未能广泛使用。目前在进行改进二氧化铬的工作,如常压下制备和进行包钴的研究等。
③钴-氧化铁磁粉 为提高氧化铁磁粉的Hc,人们早就想采用在其中加钴的方法,迄今为止最成功的是包钴型磁粉。该法最早是由美国于1971年提出,包钴可分为两种:使用γ-Fe2O3为原料在水中分散后表面包覆Co(OH)2或形成钴铁氧体CoxFe3-xO4而成。后者的Hc可高出一倍左右。1973年日本东京电气化学工业公司研制出的Avi-lyn磁粉即属此类。它的Hc高并可在一定范围内变化而对磁头的磨损仅为二氧化铬的1/5。包钴磁粉制成的磁带不仅与二氧化铬磁带有完全的互换性,而且彩色信号输出电平与信噪比等都超过了二氧化铬磁带。
近年来, 由于高Hc复制母带、 磁性卡片及垂直记录等对高Hc磁粉的特殊需要,六角结构的钡铁氧体(Hc>2000Oe)及其他高Hc永磁材料也被用作记录材料而受到重视。1982年日本用玻璃结晶法研制出钡铁氧体单畴细粉并制成涂布型垂直磁带。
金属磁粉 它的高σs(两倍于γ- Fe2O3)和高Hc(>1000 Oe) 使它作为高密度记录材料早就引起人们的重视,由于稳定性差和在磁浆中不易分散等缺点,一直未能实用化。1978年金属粉商品磁带研制成功,这方面的发展极为迅速。制造方法主要有:①针状氧化铁在氢气中还原;②用强还原剂在磁场作用下于水溶液中还原金属盐;③真空蒸发凝聚等。
参考书目
李荫远、李国栋著:《铁氧体物理学》,科学出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条