1) multilayer coating
多层涂层
1.
Based on the displacement function solution for plane issue in elastic mechanics, the common solutions of interface stress and displacement in multilayer coatings system are deduced by Fourier transformation, so that an effective and simple algorithm to calculate interface stress of coatings is obtained.
基于弹性力学平面问题的位移函数解法,运用Fourier积分变换推导了多层涂层体系界面应力及位移分量的一般解,得到一种高效、简便的涂层界面应力计算方法。
2.
The behaviors of multilayer coatings including TiN film are introduced.
综述了近年来TiN涂层的应用,以及为改善TiN涂层性能而进行的多元合金化、多层涂层方面的研究工作,并指出了TiN涂层的发展方向。
3.
Compared with single layer ones, the third generation coatings, multicomponent and multilayer coatings, are found to have more excellent mechanic properties such as moderate residual stress, good adherence to the substrate, proper hardness to toughness ratio, low friction coefficient and wear rate, etc.
多层涂层与单一涂层相比具有优异的力学性能 :低的内应力、高附着力、适当的硬度刚度比、低的摩擦及磨损。
2) multi-element coating
多元涂层
3) multi-layer cladding
多层涂覆
1.
According to the theory of columnar/equiaxed transition (CET) in front of the solid/liquid interface, it was found that, in the single path multi-layer cladding layers and multi-path multi-layer cladding layers, the microstructure with the same crystal-lographic orientation as .
利用高温合金Rene95粉末在镍基高温合金基材上进行激光多层涂覆,研究熔覆层中凝固显微组织的生长特性,基于对柱状晶向等轴晶转化理论的分析,证实通过控制工艺参数组合,可获得具有良好取向的单道多层、多道搭接多层定向凝固涂层和圆环的定向凝固试样,涂层内部的定向凝固柱状枝晶组织细密,枝晶一次间距为5-30μm,二次臂很小或者完全退化,涂层内无明显的成分偏析现象。
4) porous coating
多孔涂层
1.
Preparation and characterization of polyurethane porous coating;
聚氨酯多孔涂层制备与表征
2.
In order to modify the surface biologic characteristics of 316L stainless steel, based on the theory of phase inversion, we prepared PU compact and porous coatings in the help of water vapor.
利用扫描电子显微镜(SEM)观察样品的表面形貌,着重研究了湿度和浓度对多孔涂层表面形貌、孔径尺寸和孔面积百分比的影响。
5) porous layer
多孔涂层
1.
Considered the liquid transverse suction effect at the porous layer interface,mathematical models was presented to investigate the influences of the porous layer charac-teristic parameters on condensation heat transfer.
研究多孔涂层界面抽吸效应对强化膜状凝结换热的影响。
6) multiple coating
多层涂布
补充资料:多层球
恒星可认为是由其内部物质在压力与自引力达到平衡时所构成的体系。因此,恒星内部结构依赖于物质的物态方程。在许多情况下,物态方程具有形式:P=Kργ,称为多方物态方程。式中 P和ρ分别为物质的压力和密度;K为常数;γ称为多方指数,或写成n称为多方指标。以多方物态方程为基础而建立的星体模型,称为多层球,多方指标为n的多层球的基本方程是:
式中为中心密度,A =G为万有引力常数,这方程称为莱恩-埃姆登方程,已有详细的数值解。
式中为中心密度,A =G为万有引力常数,这方程称为莱恩-埃姆登方程,已有详细的数值解。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条