1) compaction curve
压实曲线
1.
The compaction curve of mud formation may reflect the law of hydrocarbon migration,and the poorly-compacted interval of mudformation usually corresponds to low ve.
泥岩压实曲线可以反映油气运移规律,而泥岩欠压实带通常表现为低速异常。
2.
The results obtained from the compactional studies by means of the microscope observation of sections,a compaction curve of porosity vs depth and the simulating experiments of carbonate rocks in Ordos basin at high-temperature and-pressure suggest the compaction,especially mechanical compaction exists in the carbonate rocks.
作者在鄂尔多斯盆地的碳酸盐岩石压实研究中采用薄片的显微观察、孔隙度随深度的压实曲线和高压高温压实模拟实验,证实压实作用,特别是机械压实作用存在。
2) synthetic compaction curve
综合压实曲线
3) actual compression curve
实际压缩曲线
4) sedimentary compaction curve
沉积压实曲线
5) characteristics of compaction curve
压实特性曲线
补充资料:平面实代数曲线
平面实代数曲线
plane real algebraic curve
代数曲线L上是正则的(reg川ar).如果存在(曲线L上以及M上的)正则映射F:L一,M和G:M一,L,它们互为逆映射,则称曲线L和M是同构的(isomorphjc).此时环K(L)和K(M)同构.特别地,仿射等价的曲线是同构的. 更一般地,从曲线L到曲线M的有理映射(fa-tio耐mapPing)可用有理函数表示.它建立了曲线间除去有限多点外其他所有点问的一个对应,而且可如下定义.设.厂二0和g二0分别是L和M的定义方程,则有理映射F可由一对定义在L上且满足g(势,吵)二0的有理函数价和沙所定义.如果存在从L到M和从M到L的互逆有理映射,则称曲线L与M是双有理等价的(birati。蒯ly叫u」讼正nt).这样的有理映射称为双有理变换(bira如nal tmnsfon刀ation)或Cre仃IOna变换(Crernona trdnsfonl、比tion).平面上的所有Crenlolla变换可通过逐次执行标准二次孪攀(st anctard quadnltictonsl’orma咖)二‘一’1)王,y一1 Zy,以及射影变换来实现.双有理等价性比同构粗糙,但是从这个观点对平面实代数曲线作分类则更简单且易于观察. 有理变换的一个很简单的例子是射影变换(projec-tivet~formatlon).从一条不是直线的不可约曲线L到L的对偶(dUal)曲线L‘里的对偶映射(d比11 map-p哩)起着重要的作用,这个对偶映射由下式定义: 兰工 一万万平下百一, 了一x于午一y会乙 刁x护刀y 互 .、_刁y v二一.(2、 I一X一一V一 t)x口y其中f是定义L的多项式.从(1)和(2)中消去x和y得到的方程 夕(u,v)二0定义了L’从对偶映射与切线变换(tangent达It伽s-formation)间的关系,可以看出在某些情形里L‘可被表示为与L相切的直线族的包络. L’的次数称为曲线L的类(class)n’.对偶关系是互反的,即L‘’二L,它是射影几何里的对偶原理(d珑山ty pnncjPle)的一个反映. 由(l)定义的平面实代数曲线L的点x当在x处有gmdf“O时被称为奇点(sin即lar point).奇点的分析对于L的研究是十分必要的,可是奇点的分类迄今尚远未完成. 如果多项式厂在x点的直至r一l阶的导数都等于O,而x点的r阶导数异于零,则称x为厂重点(point of multiPlicity。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条