1) Runoff pollution
径流污染
1.
The analysis of runoff pollution of Handan;
邯郸市雨水径流污染分析
2.
Purification effectiveness of runoff pollution by the permeable asphalt pavement
透水沥青路面对路面径流污染的净化功效
3.
The urban rainfall runoff pollution originates from the precipitation,the urban surface and the drainage system.
城市降水径流污染中的污染物主要来自降水、城市地表和排水系统。
2) Runoff contaminants
径流污染物
1.
Reduction functions of runoff contaminants by the urban greenbelt;
城市绿地对雨水径流污染物的削减作用
3) contaminated runoff
受污染径流
4) rainfall runoff pollution
降雨径流污染
1.
The results from characteristics of precipitation runoff, the process of runoff and soil erosion showed that soil and water loss is a serious form of rainfall runoff pollution, analysed and discussed the control difficulty in soil and water conservation measures, and put forward to design three principles of the soil and water conservation measures.
从降雨径流污染特点、径流过程、土壤侵蚀过程和泥沙传输过程,说明水土流失是一种严重的降雨径流污染形式,分析讨论了水土保持措施对降雨污染控制的难度,提出了水土保持措施设计的3条原则。
2.
This article is a comment on the rainfall runoff pollution research in recent years, and it is a summary of Chinese and abroad researchers from Rainfall runoff pollution sources, style, reaearch techinques and methods, mechanism, management measures and control techniques.
降雨径流污染是种最重要的非点源污染类型,由于其污染发生的随机性及污染物排放量的不确定性,越来越引起世界各国政府的重视,全球环保工作者已投入大量的人力物力对径流污染开展了多种途径的研究。
5) stormwater pollution
暴雨径流污染
1.
Application of eco-concrete for controlling stormwater pollution from urban sloping-land;
利用生态混凝土控制城市坡面暴雨径流污染试验研究
6) stormwater pollutants
雨水径流污染
1.
Prediction of stormwater pollutants on road of urban Zhenjiang;
镇江城市道路雨水径流污染预测
补充资料:冰川融水径流
冰川冰和冰川表面雪融水汇入河道形成的径流。多数为季节性径流,少数大冰川末端为常年性径流,是寒冷地区的重要水资源。
形成 由0℃的冰转为0℃的液态水需要消耗的热量为335焦耳/厘米3。其热源主要来自太阳辐射,其次是冰面与近地面层大气湍流交换热和水汽凝结释放热。大陆性冰川的热量收支中,太阳辐射平衡值占80~90%以上,乱流交换热值占不到10%,凝结释放热值约占5%。海洋性冰川的热量收支中,太阳辐射平衡值仅约占60%,而乱流交换热值约占30%,凝结释放热值约占10%。
冰川融水径流多为季节性径流。在北半球每年春季融雪时,山区河流开始出现春汛(4~6月初)(冰面才开始消融,径流十分微小。6~8月为冰面的强烈消融期,形成大量径流。径流一部分沿冰面向河道下泄,一部分渗入冰内,通过冰下河道注入河流。冰内和冰下河道主要发育于冰温较高的海洋性冰川和大陆性的大山谷冰川的下段,如欧洲的阿尔卑斯山、北美的阿拉斯加以及中国西藏东南部、天山、喀喇昆仑山、喜马拉雅山等大冰川区。小规模的大陆性冰川则以冰面径流为主。冰面消融的情况通常用消融深度(A)表示,即以气温每增高1℃,冰川每日的消融深度计算。公式是:
A=cΣT
或A=φ(T+b)m
式中c为度、日因子;ΣT为累积正气温;φ为地理参数;T为夏季平均气温;b、m为系数。
不同地区的冰川,由于太阳辐射量等条件的不同,冰面的消融深度也不同。如在中国,西藏东南部的海洋性冰川的消融深度最大,约5000~6000毫米/年,大致向西、西北方向递减,祁连山东部冰川约1200毫米/年,祁连山西部冰川减为600~700毫米/年,天山东段冰川为700毫米/年,帕米尔、珠穆朗玛峰地区冰川为500~600毫米/年。
特征 冰川融水径流的特征明显。①日变化大。如天山乌鲁木齐河源Ⅰ号冰川水文断面的最低水位出现在8时左右,最高水位出现在17~18时,径流量的峰、谷之间的最大差比可达1:10以上,这是其他径流很少见到的现象。②季节变化大。由于冰川消融深度受气温变化的制约,冰川融水的流量峰谷与气温峰谷是相对应的,但流量峰谷滞后于气温峰谷。在冬季,小规模的大陆性冰川无论是冰面或冰内都无径流。而海洋性冰川因冰层内处于压力融点,冰内、冰下河道相当发育,冬季一般不断流。春、夏两季为冰川消融期,在北半球大陆性冰川一般为5~9月,海洋性冰川则为4~10月,因此冰川融水径流高度集中于6~8月,约占年径流总量的70~90%。③年际变化大。冰川融水径流与一般河流径流的年际变化呈相反趋势:在高温干旱年份冰川融水径流为丰水年,因为高温干旱,冰川消融强烈,冰川支出量大于积累量。在低温湿润年份,冰川融水径流量则变小,因为低温湿润,冰川消融减弱,冰川的积累量大于支出量。因此,冰川融水径流对河川的补给作用,一方面加剧了河川径流年内分配的不均匀性,另一方面又缩小了河川径流的年际变化。得到冰川融水径流补给的河流,具有干旱年不缺水、多雨年河流水量小的特点,缓和了河流丰枯水年水量的变化。如中国天山西段台兰河,由于有冰雪径流的补给,在降水量比常年少19.6%的1962年,河水径流量却比常年大23.2%;在降水量比常年大46.5%的1971年,河水径流量却比常年小9.9%。④大陆性冰川的冰川融水径流模数明显地小于海洋性冰川。冰川融水径流模数是指单位时间内单位面积的冰川融水径流强度,以升/秒·平方公里 (1/sec·km2)表示。大陆性冰川海拔高,气候干冷、降水稀少,冰川融水径流的单位面积流量小;海洋性冰川海拔与纬度较低,气候温和,降水充沛,其冰川融水径流的单位面积流量大。如属于大陆性冰川的帕米尔冰川融水径流模数为15~50升/秒·平方公里,西藏东南部的海洋性冰川为110~190升/秒·平方公里。 径流模数还具有垂直地带性分布特点,随着海拔高度的增高而递增(见图)。高寒冰川作用区是径流的高值区,因此中国西部山岳冰川是河流重要的源泉。如冰川融水径流对河川的补给比量在青藏高原腹地占30~40%,有的可达50%以上。
形成 由0℃的冰转为0℃的液态水需要消耗的热量为335焦耳/厘米3。其热源主要来自太阳辐射,其次是冰面与近地面层大气湍流交换热和水汽凝结释放热。大陆性冰川的热量收支中,太阳辐射平衡值占80~90%以上,乱流交换热值占不到10%,凝结释放热值约占5%。海洋性冰川的热量收支中,太阳辐射平衡值仅约占60%,而乱流交换热值约占30%,凝结释放热值约占10%。
冰川融水径流多为季节性径流。在北半球每年春季融雪时,山区河流开始出现春汛(4~6月初)(冰面才开始消融,径流十分微小。6~8月为冰面的强烈消融期,形成大量径流。径流一部分沿冰面向河道下泄,一部分渗入冰内,通过冰下河道注入河流。冰内和冰下河道主要发育于冰温较高的海洋性冰川和大陆性的大山谷冰川的下段,如欧洲的阿尔卑斯山、北美的阿拉斯加以及中国西藏东南部、天山、喀喇昆仑山、喜马拉雅山等大冰川区。小规模的大陆性冰川则以冰面径流为主。冰面消融的情况通常用消融深度(A)表示,即以气温每增高1℃,冰川每日的消融深度计算。公式是:
或
式中c为度、日因子;ΣT为累积正气温;φ为地理参数;T为夏季平均气温;b、m为系数。
不同地区的冰川,由于太阳辐射量等条件的不同,冰面的消融深度也不同。如在中国,西藏东南部的海洋性冰川的消融深度最大,约5000~6000毫米/年,大致向西、西北方向递减,祁连山东部冰川约1200毫米/年,祁连山西部冰川减为600~700毫米/年,天山东段冰川为700毫米/年,帕米尔、珠穆朗玛峰地区冰川为500~600毫米/年。
特征 冰川融水径流的特征明显。①日变化大。如天山乌鲁木齐河源Ⅰ号冰川水文断面的最低水位出现在8时左右,最高水位出现在17~18时,径流量的峰、谷之间的最大差比可达1:10以上,这是其他径流很少见到的现象。②季节变化大。由于冰川消融深度受气温变化的制约,冰川融水的流量峰谷与气温峰谷是相对应的,但流量峰谷滞后于气温峰谷。在冬季,小规模的大陆性冰川无论是冰面或冰内都无径流。而海洋性冰川因冰层内处于压力融点,冰内、冰下河道相当发育,冬季一般不断流。春、夏两季为冰川消融期,在北半球大陆性冰川一般为5~9月,海洋性冰川则为4~10月,因此冰川融水径流高度集中于6~8月,约占年径流总量的70~90%。③年际变化大。冰川融水径流与一般河流径流的年际变化呈相反趋势:在高温干旱年份冰川融水径流为丰水年,因为高温干旱,冰川消融强烈,冰川支出量大于积累量。在低温湿润年份,冰川融水径流量则变小,因为低温湿润,冰川消融减弱,冰川的积累量大于支出量。因此,冰川融水径流对河川的补给作用,一方面加剧了河川径流年内分配的不均匀性,另一方面又缩小了河川径流的年际变化。得到冰川融水径流补给的河流,具有干旱年不缺水、多雨年河流水量小的特点,缓和了河流丰枯水年水量的变化。如中国天山西段台兰河,由于有冰雪径流的补给,在降水量比常年少19.6%的1962年,河水径流量却比常年大23.2%;在降水量比常年大46.5%的1971年,河水径流量却比常年小9.9%。④大陆性冰川的冰川融水径流模数明显地小于海洋性冰川。冰川融水径流模数是指单位时间内单位面积的冰川融水径流强度,以升/秒·平方公里 (1/sec·km2)表示。大陆性冰川海拔高,气候干冷、降水稀少,冰川融水径流的单位面积流量小;海洋性冰川海拔与纬度较低,气候温和,降水充沛,其冰川融水径流的单位面积流量大。如属于大陆性冰川的帕米尔冰川融水径流模数为15~50升/秒·平方公里,西藏东南部的海洋性冰川为110~190升/秒·平方公里。 径流模数还具有垂直地带性分布特点,随着海拔高度的增高而递增(见图)。高寒冰川作用区是径流的高值区,因此中国西部山岳冰川是河流重要的源泉。如冰川融水径流对河川的补给比量在青藏高原腹地占30~40%,有的可达50%以上。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条