1)  FFT
FFT
1.
FFT and Digital Characterization of Random Surfaces;
FFT与随机表面的数字表征
2.
STM and FFT studies of intra-grain defect of carbide in a high Cr steel;
高铬钢碳化物晶内缺陷的STM及FFT分析
3.
Non-contact life-parameters signal detecting of frequency domain signal integration based on FFT;
基于FFT频域积累的非接触生命参数信号检测
2)  FFT
快速傅立叶变换
1.
Roll eccentricity compensation control based on FFT;
基于快速傅立叶变换的轧辊偏心补偿控制
2.
The Implementation of Fast Fourier Transform (FFT) in DSP;
快速傅立叶变换(FFT)在数字信号处理器(DSP)上的实现
3.
The Analysis of the Phase-Shift Error of the PMP Phase-Shift Device Using FFT Method;
利用快速傅立叶变换分析PMP相移机构的相移误差
3)  FFT
傅里叶变换
1.
FFT-based orientation identification algorithm in fira;
基于傅里叶变换的Fira机器人朝向角辨识算法
2.
The resulting binary image was transformed using FFT method.
用适当方法对纱线图像作二值化处理,提取表面纤维图像,并根据图像分析技术中的傅里叶变换原理,对有关像素坐标进行线性回归确定纱线捻度,与手工测试相比,用图像处理测试纱线捻度的方法是可靠、准确、快捷的。
3.
The proposed method overcomes the shortcomings of FFT-based method such as sensitivity to noise and inaccurate performance in non-stationary environments.
针对基于傅里叶变换(FFT)的谐波分析方法易受噪声干扰和对暂态谐波处理精度差的缺点,提出了一种基于小波包变换的谐波分析算法。
4)  FFT
FFT算法
1.
FFT Algorithm for Calculating the SALS Patterns from Anisotropic Objects Immersed in an Isotropic Matrix;
材料介观有序结构小角光散射图案的FFT算法
2.
Implementation of DSP on FFT in Virtual Instrument;
虚拟仪器中FFT算法的DSP实现
3.
And the frequency response of this inverter is obtained using FFT via the Matlab Simulink.
并在Simulink环境中,采用FFT算法,仿真得出了逆变器的动态频率特性。
5)  FFT
FFT(FastFourierTransform)
6)  FFT
快速富里叶交换
补充资料:快速傅立叶变换

快速傅氏变换 英文名是fast fourier transform

快速傅氏变换(fft)是离散傅氏变换(dft)的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。它对傅氏变换的理论并没有新的发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。

设x(n)为n项的复数序列,由dft变换,任一x(m)的计算都需要n次复数乘法和n-1次复数加法,而一次复数乘法等于四次实数乘法和两次实数加法,一次复数加法等于两次实数加法,即使把一次复数乘法和一次复数加法定义成一次“运算”(四次实数乘法和四次实数加法),那么求出n项复数序列的x(m),即n点dft变换大约就需要n2次运算。当n=1024点甚至更多的时候,需要n2=1048576次运算,在fft中,利用wn的周期性和对称性,把一个n项序列(设n=2k,k为正整数),分为两个n/2项的子序列,每个n/2点dft变换需要(n/2)2次运算,再用n次运算把两个n/2点的dft变换组合成一个n点的dft变换。这样变换以后,总的运算次数就变成n+2(n/2)2=n+n2/2。继续上面的例子,n=1024时,总的运算次数就变成了525312次,节省了大约50%的运算量。而如果我们将这种“一分为二”的思想不断进行下去,直到分成两两一组的dft运算单元,那么n点的dft变换就只需要nlog2n次的运算,n在1024点时,运算量仅有10240次,是先前的直接算法的1%,点数越多,运算量的节约就越大,这就是fft的优越性。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。