说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 概率
1)  probability [英][,prɔbə'bɪləti]  [美]['prɑbə'bɪlətɪ]
概率
1.
Analysis to occurrence probability of water bloom in Hanjiang river under different water transfer schemes of the middle route of China's south-to-north water transfer project;
南水北调中线不同调水方案下的汉江水华发生概率分析
2.
eliminary discussion on the method of using water cut probability to evaluate interlayer waterflooded condition-taking Bin 79 block of Shangdian oilfield as example.;
含水概率评价层间水淹状况的方法初探——以尚店油田滨79块为例
3.
Probability Analysis and Calculation of Fixture Location Error;
夹具定位误差的概率分析计算
2)  probabilistic [英][,prɔbəbɪ'lɪstɪk]  [美]['prɑbəbɪ'lɪstɪk]
概率
1.
Extended probabilistic data model based on XML;
一种扩展的基于XML的概率数据模型
2.
A Study of Probabilistic Data Model Based on XML;
基于XML的概率数据模型研究
3.
This paper applies fuzzy mathematics and probabilistic method for studying the variation regulation of running car box temperature, setting up the prediction standards and modes for infrared hot box detection.
本文利用概率统计理论,在全国8个铁路局的29个到这场或编组场,对各种气候环境下采集的10万个轴温数据进行了分析,运用模糊数学理论给出了不同等级热轴的判别模式,以及运行列车热轴预报方法。
3)  probabilities [英][,prɔbə'biliti]  [美][,prɑbə'bɪlətɪ]
概率
1.
Probabilities of Specific Numbers Resulted from Sele calculation in The Book of Changes and Its Applications in Archaeology;
《周易》揲2算法结果数的出现概率及考古应用
2.
So the upper bounds of maximum differential and linear characteristic probabilities for 4r-round ciph.
从而若设轮函数的最大差分和线性特征的概率分别为p和q,则4r(r≥2)轮广义Feistel密码的差分特征和线性特征的概率分别以p2r+1和q2r+1为其上界。
3.
Random phenomena are the object of study of probability theory and mathematical statistics,and random matters and their probabilities are the basis of probability theory and mathematical statistics.
概率论与数理统计的研究对象是随机现象,而随机事件及其概率概率论与数理统计的基础。
4)  possibility [英][,pɔsə'bɪləti]  [美]['pɑsə'bɪlətɪ]
概率
1.
Generation Function is a very important tool to simplify the complex possibility solutions.
用母函数的方法可以使一些复杂的概率的求法得以简化,本文系统介绍了母函数在这方面应用,并且对其可解问题进行了分类,使之具有较强的可操作性的实用价值。
5)  probability concepts
概率概念
6)  probability gain
概率增率
补充资料:概率
概率
probability

   随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。
   在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用ZY分别表示第一次和第二次出现的点数,ZY可以取值1、2、3、4、5、6,每一点(ZY)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件。若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。
    古典概率  古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=mn,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。
    几何概率   若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。
    概率的频率定义   随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条