1) width
[英][wɪdθ] [美][wɪdθ]
宽度
1.
Experimental research on outlet width of impeller of centrifugal pump;
离心泵输油时出口宽度选取的实验研究
2.
A radiographic study on the development in width of chinese fetal vertebral column;
国人胎儿脊柱发育宽度的X线照相研究
3.
Discussion on the corridor width of the Grand Canal:with Tianjin section as an example;
基于遗产分布的运河遗产廊道宽度研究——以天津段运河为例
2) breadth
[英][bredθ] [美][brɛdθ]
宽度
1.
Many various but complementary vocabulary knowledge frameworks have been proposed, in which breadth and depth of vocabulary knowledge occupy a primary and central place.
词汇的宽度和深度这两个维度是其中最基本也是最核心的方面。
2.
As a S-link,Hopf-link\'s polynomial with two variables is concluded,and breadth of the two variables(say l and m) is given for it.
Hopf-环链是一种简单且常见的环链,具有很多性质,这里主要论证了Hopf-环链是一种S-环链,并从S-环链出发得出了n个分支的Hopf-环链的两个变量的环链多项式以及多项式中两个参数的宽度。
3) width; breadth
宽度,幅宽
4) breadth
[英][bredθ] [美][brɛdθ]
宽度;宽
5) breadth
[英][bredθ] [美][brɛdθ]
宽度;型宽
6) width
[英][wɪdθ] [美][wɪdθ]
宽度,幅,宽
补充资料:宽度
刻画巴拿赫空间内对称点集的"宽狭"程度的一个数量表征。作为逼近论的一个基本概念是苏联数学家Α.Η.柯尔莫哥洛夫在1935年首先提出来的。它的基本思想可以从下面的几何问题提炼出来。
在欧氏平面R 2上给出点集M是椭圆围成的图形,原点(0,0)是M的对称中心。考虑R2的任何一维的线性子空间F1和M的偏差程度。每一F1就是过原点O的一条直线。作椭圆的平行于F1的两条切线 F姈, F媹, F1对M的偏差度乃是 F姈, F媹所夹带形区域的宽度的一半(见)。变动F1的斜率, F1与M的偏差度也随之改变。当 F1与 x轴重合时,这个量最小,等于椭圆的半短轴。这个最小值就称为点集M在R2空间内的一维宽度(柯尔莫哥洛夫宽度)。
一般地说,若M是巴拿赫空间X内的关于O点的对称集,是X 的任一n维线性子空间,M中任一点x到的距离是 M和之间的(整体的)偏差度是。如果变动(n不变),要选择使 M到的整体偏差最小。这就自然提出下面的极值问题:计算量并且求出使下确界实现的所有。这里的量dn(M;X)称为M在X内在柯尔莫哥洛夫意义下的n维宽度。
在逼近论中对宽度的研究,主要包括两个方面的问题,即给出dn(M;X)的数量估计,和找出所有能使宽度实现的n 维线性子空间。这些问题的研究不但具有理论意义,而且也具有实际价值。因为这样会引导找到M的新的、更好的逼近方法。
Α.Η.柯尔莫哥洛夫在1935年研究了X=l2(平方可和的函数空间)内某些函数类的宽度。对宽度理论的系统研究是从50年代由基哈米洛夫开始的,近20年来这一方面的研究取得了很大进展。
在欧氏平面R 2上给出点集M是椭圆围成的图形,原点(0,0)是M的对称中心。考虑R2的任何一维的线性子空间F1和M的偏差程度。每一F1就是过原点O的一条直线。作椭圆的平行于F1的两条切线 F姈, F媹, F1对M的偏差度乃是 F姈, F媹所夹带形区域的宽度的一半(见)。变动F1的斜率, F1与M的偏差度也随之改变。当 F1与 x轴重合时,这个量最小,等于椭圆的半短轴。这个最小值就称为点集M在R2空间内的一维宽度(柯尔莫哥洛夫宽度)。
一般地说,若M是巴拿赫空间X内的关于O点的对称集,是X 的任一n维线性子空间,M中任一点x到的距离是 M和之间的(整体的)偏差度是。如果变动(n不变),要选择使 M到的整体偏差最小。这就自然提出下面的极值问题:计算量并且求出使下确界实现的所有。这里的量dn(M;X)称为M在X内在柯尔莫哥洛夫意义下的n维宽度。
在逼近论中对宽度的研究,主要包括两个方面的问题,即给出dn(M;X)的数量估计,和找出所有能使宽度实现的n 维线性子空间。这些问题的研究不但具有理论意义,而且也具有实际价值。因为这样会引导找到M的新的、更好的逼近方法。
Α.Η.柯尔莫哥洛夫在1935年研究了X=l2(平方可和的函数空间)内某些函数类的宽度。对宽度理论的系统研究是从50年代由基哈米洛夫开始的,近20年来这一方面的研究取得了很大进展。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条