1) energy band
能带
1.
A simplified calculation of the energy band structure for a diamond-type crystal;
金刚石型晶体能带的计算
2.
The energy band structure of AgBr crystal;
AgBr晶体的能带结构
3.
A Calculation of energy band of crystal silicon using density functional theory and first-principles
晶体Si能带的密度泛函及第一性原理计算
2) band structure
能带
1.
Propagation of water wave over a periodically perforated bottom and the band structure
水波在周期性钻孔底部结构中的传播及其能带
2.
Meantime,the energy band structures and densi- ty of state of poly(2,5-pyridinediyl)(PPY)were analyzed.
采用密度泛函(DFT)B3LYP方法,在6-31G*基组水平对聚吡啶分子PPY进行计算,找出了结构稳定性与电子性质的变化规律;并对其能带结构与态密度进行了分析与探讨。
3.
The effects of inhomogeneous strain on the band structure and TE mode gain were studied for low dimensional quantum systems.
研究了非均匀应变对低维量子结构的能带和TE模光增益所产生的影响。
3) Band
[英][bænd] [美][bænd]
能带
1.
It shows that,for the one-dimensional photonic crystals,there are abnormal refraction in the first band.
结果表明,对于一维光子晶体,在第一能带内,存在反常折射现象。
2.
The electronic and energy-band structures of the title alloys have been studied by using the tight-binding method within the extended Huckel approximation(EHT).
用紧束缚能带计算方法(EHT)研究了标题多元合金的能带及电子结构。
3.
The electronic structure of a quaternary alloy has been investigated using EHT band calculation method.
用EHT紧束缚能带计算方法,研究了四元合金的电子结构。
4) energy bands
能带
1.
The energy dispersion relations and wave functions of armchair carbon nanotubes under axial strain were derived analytically,the affluence of axial strain on the energy bands,Fermi wave vector,Fermi dot and effective mass near Fermi face of armchair carbon nanotubes were investigated.
解析推导了轴向拉伸情况下扶手椅型碳纳米管的能量色散关系和波函数,并分析了轴向拉伸对扶手椅型碳纳米管能带、导电性能、费米波矢、费米点及费米面处的有效质量的影响。
2.
The photo-induced voltage between the back etching and edge etching silicon were compared, explaining the difference by means of the theory of energy bands.
采用正面无保护的背腐蚀方法分离p-n结,用SEM图观察了背腐蚀后硅片表面形貌的变化,对背腐蚀与刻边分离p-n结样品的光生电动势进行了比较,用能带理论对其差别做了深入的解释。
5) band,energy band
能带<能>
6) positive band
正带,正能带
补充资料:能带
分子式:
CAS号:
性质:在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。在0K时电子在能带中所占据的最高充填能级称为费米能级。固体的能带可以用能态密度表示,它表示了在单位能量间隔内电子状态的数目。能态密度为零的区间称为禁带,最高完全占据的能带称做价带,最低未完全占据的能带称做导带。金属材料中导带被部分充填,因而具有电子导电性。半导体和绝缘体的导带都是空的,价带完全充满,两者的区别是禁带的宽度不同。固体能带的宽度也是表征固体特性的管理机制因素,它与晶体中原子轨道间的相互作用大小直接相关。对过渡金属元素而言,第一过渡金属元素的d轨道间的相互作用较小,形成的能带宽度较窄,所以相应的过渡金属氧化物多为半导体。第二和第三过渡系列元素d轨道间的相互作用较强,形成的能带较宽,所以相应的化合物常具有金属性。
CAS号:
性质:在形成分子时,原子轨道构成具有分立能级的分子轨道。晶体是由大量的原子有序堆积而成的。由原子轨道所构成的分子轨道的数量非常之大,以至于可以将所形成的分子轨道的能级看成是准连续的,即形成了能带。在0K时电子在能带中所占据的最高充填能级称为费米能级。固体的能带可以用能态密度表示,它表示了在单位能量间隔内电子状态的数目。能态密度为零的区间称为禁带,最高完全占据的能带称做价带,最低未完全占据的能带称做导带。金属材料中导带被部分充填,因而具有电子导电性。半导体和绝缘体的导带都是空的,价带完全充满,两者的区别是禁带的宽度不同。固体能带的宽度也是表征固体特性的管理机制因素,它与晶体中原子轨道间的相互作用大小直接相关。对过渡金属元素而言,第一过渡金属元素的d轨道间的相互作用较小,形成的能带宽度较窄,所以相应的过渡金属氧化物多为半导体。第二和第三过渡系列元素d轨道间的相互作用较强,形成的能带较宽,所以相应的化合物常具有金属性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条