1) system optimization model
系统优化模型
1.
It is pointed out that this technology is applicable to modern torpedo design by building up system optimization model suitable for torpedo,determining the optimization algorithm,optimizing design process,and establishing the multidisciplinary concurrent platform for torpedo overall design and optimization.
介绍了国内外多学科优化设计技术的现状与发展,基于该技术在国内起步较晚、在鱼雷领域的应用还是空白的现状,展望了多学科优化设计技术在现代鱼雷技术中的应用,认为应从4个方面开展工作:建立适合鱼雷使用的系统优化模型;确定优化算法;研究优化设计流程;建立鱼雷总体多学科优化设计平台,从而实现全雷各系统各学科的协同设计,提高鱼雷总体设计水平。
2) energy system optimization
能源系统优化模型
3) system optimization equilibrium model
系统优化平衡模型
1.
In order to select parking and riding(P&R) establishment effectively and reasonably,road section saturation and parking availability were regarded as two main factors,and a system optimization equilibrium model(SO) aiming at minimizing gross road section and parking impedances was established,which served the users parking behaviors of the establishment.
为有效合理地选择停车换乘设施,以路段及停车总阻抗最小为优化目标,选取路段饱和度及停车换乘设施可用性作为主要影响因素,提出了一种服务于停车换乘者停车行为的系统优化平衡模型,利用Hessian矩阵证明了模型解的唯一性,归纳了模型求解步骤,求得各个停车换乘设施的分配停车量。
2.
In order to select the park and ride facilities effectively and reasonably,a system optimization equilibrium model which serves park and ride facility users was established.
为探索如何有效合理地选择停车换乘设施,提出了一种服务于停车换乘者停车行为的系统优化平衡模型。
4) the optimization model of bilevel system
二层系统优化模型
5) Reposition optimization model
渡箱系统优化模型
6) optimum statistical model
优化统计模型
补充资料:系统优化
对于系统结构已知的化工系统进行优化,即确定其最优操作参数。它是化工系统工程的核心内容。化工过程通常由若干单元组成,这些系统按单元间结合的方式可分为串联(多级)系统和复杂系统。在串联系统中,前一个单元的输出是后一个单元的输入。串联系统的例子有多级萃取过程以及级间冷却的多级绝热固定床反应器的操作过程等。所有其他非串联系统,都称为复杂系统。例如为了充分利用某种未全部转化的物料,往往有循环回路;同时由于工艺上的需要,在化工流程中还往往会出现支路及并联回路等,这些都是复杂系统。
到目前为止,运用现代控制理论,借助动态规划及离散最小值原理,串联系统的优化问题已经能够解决。但是对于复杂系统来说,虽然理论上可将任意复杂系统作为一个整体进行优化,但事实上由于决策变量(如控制变量或设计变量)的数目庞大,再加上各个单元之间有着比较复杂的联结关系,复杂系统的优化问题还较难解决,然而这也恰恰是实践上有待解决的迫切问题。
近十年来,随着大系统理论的发展,应用二等级分解法处理复杂化工系统的优化问题受到了人们的重视。所谓二等级分解法,就是先把一个复杂系统分解为若干规模较小的子系统,第一等级处理各个子系统的局部最优化问题;第二等级为协调中心,它调整某些可调变量(协调变量),在各个子系统之间进行协调,使它们的局部最优解逐次逼近整个系统的最优解。大系统的分解必须遵循下述原则:即对于第k个子系统而言,若它与其余的子系统互相联系的各变量分别固定在规定数值上,则第k个子系统可单独进行优化处理,称为分解原理。例如现有一个业已排列好的换热器系统(见图),为使该系统在给定负荷条件下所需总传热面积为最小,需要进行最优设计计算。此时整个系统可按两个热流体的走向划分成如图所示的两个子系统,协调变量为t1、t2、t3,然后根据前述步骤可实现该系统的优化设计。设z为各个子系统之间的联结向量(协调向量),ui为第i个子系统的决策向量。当取z为有限值时,各个子系统的局部最优解ui就可表示成z的函数ui(z),然后将这个信息送至所谓的协调中心,在那里判断它是否满足整体最优解的条件。如果不满足,就在协调中心进行调整,再把修正后的z值送回到各个子系统。如此往返,逐次调整,直至趋于系统的最优解。
参考书目
高松武一郎等著,张能力、沈静珠译:《化工过程系统工程》,化学工业出版社,北京,1981。(高松武一郎など著:《ブロャスシステム》,日刊工業新聞社,東京,1972。)
到目前为止,运用现代控制理论,借助动态规划及离散最小值原理,串联系统的优化问题已经能够解决。但是对于复杂系统来说,虽然理论上可将任意复杂系统作为一个整体进行优化,但事实上由于决策变量(如控制变量或设计变量)的数目庞大,再加上各个单元之间有着比较复杂的联结关系,复杂系统的优化问题还较难解决,然而这也恰恰是实践上有待解决的迫切问题。
近十年来,随着大系统理论的发展,应用二等级分解法处理复杂化工系统的优化问题受到了人们的重视。所谓二等级分解法,就是先把一个复杂系统分解为若干规模较小的子系统,第一等级处理各个子系统的局部最优化问题;第二等级为协调中心,它调整某些可调变量(协调变量),在各个子系统之间进行协调,使它们的局部最优解逐次逼近整个系统的最优解。大系统的分解必须遵循下述原则:即对于第k个子系统而言,若它与其余的子系统互相联系的各变量分别固定在规定数值上,则第k个子系统可单独进行优化处理,称为分解原理。例如现有一个业已排列好的换热器系统(见图),为使该系统在给定负荷条件下所需总传热面积为最小,需要进行最优设计计算。此时整个系统可按两个热流体的走向划分成如图所示的两个子系统,协调变量为t1、t2、t3,然后根据前述步骤可实现该系统的优化设计。设z为各个子系统之间的联结向量(协调向量),ui为第i个子系统的决策向量。当取z为有限值时,各个子系统的局部最优解ui就可表示成z的函数ui(z),然后将这个信息送至所谓的协调中心,在那里判断它是否满足整体最优解的条件。如果不满足,就在协调中心进行调整,再把修正后的z值送回到各个子系统。如此往返,逐次调整,直至趋于系统的最优解。
参考书目
高松武一郎等著,张能力、沈静珠译:《化工过程系统工程》,化学工业出版社,北京,1981。(高松武一郎など著:《ブロャスシステム》,日刊工業新聞社,東京,1972。)
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条